philschmid's picture
philschmid HF staff
fix widget
76eae58
raw
history blame contribute delete
879 Bytes
from typing import Dict
from transformers.pipelines.audio_utils import ffmpeg_read
import whisper
import torch
SAMPLE_RATE = 16000
class EndpointHandler():
def __init__(self, path=""):
# load the model
self.model = whisper.load_model("medium")
def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:
"""
Args:
data (:obj:):
includes the deserialized audio file as bytes
Return:
A :obj:`dict`:. base64 encoded image
"""
# process input
inputs = data.pop("inputs", data)
audio_nparray = ffmpeg_read(inputs, SAMPLE_RATE)
audio_tensor= torch.from_numpy(audio_nparray)
# run inference pipeline
result = self.model.transcribe(audio_nparray)
# postprocess the prediction
return {"text": result["text"]}