--- language: en tags: - sagemaker - bart - summarization license: apache-2.0 datasets: - samsum widget: - text: "Jeff: Can I train a \U0001F917 Transformers model on Amazon SageMaker? \n\ Philipp: Sure you can use the new Hugging Face Deep Learning Container. \nJeff:\ \ ok.\nJeff: and how can I get started? \nJeff: where can I find documentation?\ \ \nPhilipp: ok, ok you can find everything here. https://huggingface.co./blog/the-partnership-amazon-sagemaker-and-hugging-face " model-index: - name: philschmid/distilbart-cnn-12-6-samsum results: - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - name: ROUGE-1 type: rouge value: 41.0895 verified: true - name: ROUGE-2 type: rouge value: 20.7459 verified: true - name: ROUGE-L type: rouge value: 31.5952 verified: true - name: ROUGE-LSUM type: rouge value: 38.3389 verified: true - name: loss type: loss value: 1.4566329717636108 verified: true - name: gen_len type: gen_len value: 59.6032 verified: true --- ## `distilbart-cnn-12-6-samsum` This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. For more information look at: - [🤗 Transformers Documentation: Amazon SageMaker](https://huggingface.co./transformers/sagemaker.html) - [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker) - [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html) - [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html) - [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers) ## Hyperparameters ```json { "dataset_name": "samsum", "do_eval": true, "do_train": true, "fp16": true, "learning_rate": 5e-05, "model_name_or_path": "sshleifer/distilbart-cnn-12-6", "num_train_epochs": 3, "output_dir": "/opt/ml/model", "per_device_eval_batch_size": 8, "per_device_train_batch_size": 8, "seed": 7 } ``` ## Train results | key | value | | --- | ----- | | epoch | 3.0 | | init_mem_cpu_alloc_delta | 180338 | | init_mem_cpu_peaked_delta | 18282 | | init_mem_gpu_alloc_delta | 1222242816 | | init_mem_gpu_peaked_delta | 0 | | train_mem_cpu_alloc_delta | 6971403 | | train_mem_cpu_peaked_delta | 640733 | | train_mem_gpu_alloc_delta | 4910897664 | | train_mem_gpu_peaked_delta | 23331969536 | | train_runtime | 155.2034 | | train_samples | 14732 | | train_samples_per_second | 2.242 | ## Eval results | key | value | | --- | ----- | | epoch | 3.0 | | eval_loss | 1.4209576845169067 | | eval_mem_cpu_alloc_delta | 868003 | | eval_mem_cpu_peaked_delta | 18250 | | eval_mem_gpu_alloc_delta | 0 | | eval_mem_gpu_peaked_delta | 328244736 | | eval_runtime | 0.6088 | | eval_samples | 818 | | eval_samples_per_second | 1343.647 | ## Usage ```python from transformers import pipeline summarizer = pipeline("summarization", model="philschmid/distilbart-cnn-12-6-samsum") conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co./blog/the-partnership-amazon-sagemaker-and-hugging-face ''' nlp(conversation) ```