File size: 7,902 Bytes
17e379b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16226a3
17e379b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Setup & Installation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Writing requirements.txt\n"
     ]
    }
   ],
   "source": [
    "%%writefile requirements.txt\n",
    "bitsandbytes\n",
    "git+https://github.com/huggingface/transformers.git\n",
    "accelerate\n",
    "sentencepiece"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install -r requirements.txt"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. Create Custom Handler for Inference Endpoints\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Overwriting pipeline.py\n"
     ]
    }
   ],
   "source": [
    "%%writefile pipeline.py\n",
    "from typing import  Dict, List, Any\n",
    "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
    "import torch\n",
    "\n",
    "class PreTrainedPipeline():\n",
    "    def __init__(self, path=\"\"):\n",
    "        # load the optimized model\n",
    "        self.model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16, device_map=\"auto\", load_in_8bit=True)\n",
    "        self.tokenizer = AutoTokenizer.from_pretrained(path)\n",
    "\n",
    "    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:\n",
    "        \"\"\"\n",
    "        Args:\n",
    "            data (:obj:):\n",
    "                includes the input data and the parameters for the inference.\n",
    "        Return:\n",
    "            A :obj:`list`:. The list contains the embeddings of the inference inputs\n",
    "        \"\"\"\n",
    "        inputs = data.get(\"inputs\", data)\n",
    "        parameters = data.get(\"parameters\", {})\n",
    "\n",
    "        # tokenize the input\n",
    "        input_ids = self.tokenizer(inputs,return_tensors=\"pt\").input_ids.to(self.model.device)\n",
    "        # run the model\n",
    "        logits = self.model.generate(input_ids, **parameters)\n",
    "        # Perform pooling\n",
    "        # postprocess the prediction\n",
    "        return {\"generated_text\": self.tokenizer.decode(logits[0].tolist())}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "test custom pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "===================================BUG REPORT===================================\n",
      "Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
      "For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link\n",
      "================================================================================\n",
      "CUDA SETUP: CUDA runtime path found: /home/ubuntu/miniconda/envs/dev/lib/libcudart.so\n",
      "CUDA SETUP: Highest compute capability among GPUs detected: 7.5\n",
      "CUDA SETUP: Detected CUDA version 113\n",
      "CUDA SETUP: Loading binary /home/ubuntu/miniconda/envs/dev/lib/python3.9/site-packages/bitsandbytes/libbitsandbytes_cuda113.so...\n"
     ]
    }
   ],
   "source": [
    "from pipeline import PreTrainedPipeline\n",
    "\n",
    "# init handler\n",
    "my_handler = PreTrainedPipeline(path=\".\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
      "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n",
      "/home/ubuntu/miniconda/envs/dev/lib/python3.9/site-packages/transformers/generation_utils.py:1228: UserWarning: Neither `max_length` nor `max_new_tokens` has been set, `max_length` will default to 20 (`self.config.max_length`). Controlling `max_length` via the config is deprecated and `max_length` will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation.\n",
      "  warnings.warn(\n",
      "/home/ubuntu/miniconda/envs/dev/lib/python3.9/site-packages/transformers/models/codegen/modeling_codegen.py:167: UserWarning: where received a uint8 condition tensor. This behavior is deprecated and will be removed in a future version of PyTorch. Use a boolean condition instead. (Triggered internally at  ../aten/src/ATen/native/TensorCompare.cpp:333.)\n",
      "  attn_weights = torch.where(causal_mask, attn_weights, mask_value)\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'generated_text': 'def hello_world():\\n    return \"Hello World\"\\n\\[email protected](\\'/'}"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\n",
    "# prepare sample payload\n",
    "request = {\"inputs\": \"def hello_world():\"}\n",
    "\n",
    "# test the handler\n",
    "my_handler(request)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
      "Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'generated_text': \"# load distilbert model and initialize text-classification pipeline\\nmodel_id = 'distilbert-base-uncased'\\nmodel_url = 'https://tfhub.dev/tensorflow/small_bert/1'\\n\\nmodel_dir = './distilBERT'\"}\n"
     ]
    }
   ],
   "source": [
    "# prepare sample payload\n",
    "request = {\n",
    "    \"inputs\": \"# load distilbert model and initialize text-classification pipeline\\nmodel_id = 'distil\",\n",
    "    \"parameters\": {\n",
    "        \"top_k\": 100,\n",
    "        \"max_length\": 64,\n",
    "        \"early_stopping\": True,\n",
    "        \"do_sample\": True,\n",
    "        \"eos_token_id\": 50256,\n",
    "    },\n",
    "}\n",
    "\n",
    "# test the handler\n",
    "print(my_handler(request))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "50256"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "my_handler.tokenizer.convert_tokens_to_ids(my_handler.tokenizer.eos_token)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.9.13 ('dev': conda)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}