--- tags: - vision - zero-shot-image-classification - endpoints-template library_name: generic --- # Fork of [openai/clip-vit-base-patch32](https://huggingface.co./openai/clip-vit-base-patch32) for a `zero-sho-image-classification` Inference endpoint. This repository implements a `custom` task for `zero-shot-image-classification` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co./philschmid/clip-zero-shot-image-classification/blob/main/pipeline.py). To use deploy this model a an Inference Endpoint you have to select `Custom` as task to use the `pipeline.py` file. -> _double check if it is selected_ ### expected Request payload ```json { "image": "/9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAMCAgICAgMC....", // base64 image as bytes "candiates":["sea","palace","car","ship"] } ``` below is an example on how to run a request using Python and `requests`. ## Run Request 1. prepare an image. ```bash !wget https://huggingface.co./datasets/mishig/sample_images/resolve/main/palace.jpg ``` 2. run request ```python import json from typing import List import requests as r import base64 ENDPOINT_URL = "" HF_TOKEN = "" def predict(path_to_image: str = None, candiates: List[str] = None): with open(path_to_image, "rb") as i: b64 = base64.b64encode(i.read()) payload = {"inputs": {"image": b64.decode("utf-8"), "candiates": candiates}} response = r.post( ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload ) return response.json() prediction = predict( path_to_image="palace.jpg", candiates=["sea", "palace", "car", "ship"] ) ``` expected output ```python [{'label': 'palace', 'score': 0.9996134638786316}, {'label': 'car', 'score': 0.0002602009626571089}, {'label': 'ship', 'score': 0.00011758189066313207}, {'label': 'sea', 'score': 8.666840585647151e-06}] ```