from typing import Dict, List, Any from PIL import Image from io import BytesIO from transformers import pipeline import base64 class PreTrainedPipeline(): def __init__(self, path=""): self.pipeline=pipeline("zero-shot-image-classification",model=path) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: images (:obj:`PIL.Image`) candiates (:obj:`list`) Return: A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} """ inputs = data.pop("inputs", data) # decode base64 image to PIL image = Image.open(BytesIO(base64.b64decode(inputs['image']))) # run prediction one image wit provided candiates prediction = self.pipeline(images=[image], candidate_labels=inputs["candiates"]) return prediction[0]