--- tags: - autotrain language: en widget: - text: I am still waiting on my card? datasets: - banking77 model-index: - name: BERT-Banking77 results: - task: name: Text Classification type: text-classification dataset: name: BANKING77 type: banking77 metrics: - name: Accuracy type: accuracy value: 92.64 - name: Macro F1 type: macro-f1 value: 92.64 - name: Weighted F1 type: weighted-f1 value: 92.6 - task: type: text-classification name: Text Classification dataset: name: banking77 type: banking77 config: default split: test metrics: - name: Accuracy type: accuracy value: 0.9275974025974026 verified: true - name: Precision Macro type: precision value: 0.9304852147882035 verified: true - name: Precision Micro type: precision value: 0.9275974025974026 verified: true - name: Precision Weighted type: precision value: 0.9304852147882035 verified: true - name: Recall Macro type: recall value: 0.9275974025974028 verified: true - name: Recall Micro type: recall value: 0.9275974025974026 verified: true - name: Recall Weighted type: recall value: 0.9275974025974026 verified: true - name: F1 Macro type: f1 value: 0.9276213811661831 verified: true - name: F1 Micro type: f1 value: 0.9275974025974026 verified: true - name: F1 Weighted type: f1 value: 0.927621381166183 verified: true - name: loss type: loss value: 0.31997689604759216 verified: true co2_eq_emissions: 0.03330651014155927 --- # `BERT-Banking77` Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 940131041 - CO2 Emissions (in grams): 0.03330651014155927 ## Validation Metrics - Loss: 0.3505457043647766 - Accuracy: 0.9263261296660118 - Macro F1: 0.9268371013605569 - Micro F1: 0.9263261296660118 - Weighted F1: 0.9259954221865809 - Macro Precision: 0.9305746406646502 - Micro Precision: 0.9263261296660118 - Weighted Precision: 0.929031563971418 - Macro Recall: 0.9263724620088746 - Micro Recall: 0.9263261296660118 - Weighted Recall: 0.9263261296660118 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/philschmid/autotrain-does-it-work-940131041 ``` Or Python API: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_id = 'philschmid/BERT-Banking77' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) classifier = pipeline('text-classification', tokenizer=tokenizer, model=model) classifier('What is the base of the exchange rates?') ```