philipp-zettl
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,32 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
@@ -17,21 +43,11 @@ tags: []
|
|
17 |
|
18 |
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:** [
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
@@ -71,34 +87,159 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
71 |
|
72 |
Use the code below to get started with the model.
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
|
88 |
-
#### Preprocessing
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
[
|
|
|
91 |
|
|
|
|
|
92 |
|
93 |
-
|
94 |
|
95 |
-
|
|
|
|
|
96 |
|
97 |
-
|
|
|
|
|
|
|
98 |
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
## Evaluation
|
104 |
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- google-research-datasets/tydiqa
|
5 |
+
license: apache-2.0
|
6 |
+
pipeline_tag: text2text-generation
|
7 |
+
base_model: google/flan-t5-small
|
8 |
+
widget:
|
9 |
+
- text: "question: What is the huggingface hub? context: The Hugging Face Hub is a
|
10 |
+
platform with over 350k models, 75k datasets, and 150k demo apps (Spaces),
|
11 |
+
all open source and publicly available, in an online platform where people
|
12 |
+
can easily collaborate and build ML together. The Hub works as a central
|
13 |
+
place where anyone can explore, experiment, collaborate, and build
|
14 |
+
technology with Machine Learning. Are you ready to join the path towards
|
15 |
+
open source Machine Learning? π€"
|
16 |
+
example_title: π€ Hub
|
17 |
+
- text: "question: What is huggingface datasets? context: π€ Datasets is a library
|
18 |
+
for easily accessing and sharing datasets for Audio, Computer Vision, and
|
19 |
+
Natural Language Processing (NLP) tasks. Load a dataset in a single line
|
20 |
+
of code, and use our powerful data processing methods to quickly get your
|
21 |
+
dataset ready for training in a deep learning model. Backed by the Apache
|
22 |
+
Arrow format, process large datasets with zero-copy reads without any
|
23 |
+
memory constraints for optimal speed and efficiency. We also feature a
|
24 |
+
deep integration with the Hugging Face Hub, allowing you to easily load
|
25 |
+
and share a dataset with the wider machine learning community. Find your
|
26 |
+
dataset today on the Hugging Face Hub, and take an in-depth look inside of
|
27 |
+
it with the live viewer."
|
28 |
+
example_title: π€ datasets
|
29 |
+
|
30 |
---
|
31 |
|
32 |
# Model Card for Model ID
|
|
|
43 |
|
44 |
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
45 |
|
46 |
+
- **Developed by:** [philipp-zettl](https://huggingface.co/philipp-zettl)
|
47 |
+
- **Model type:** Seq2Seq
|
48 |
+
- **Language(s) (NLP):**
|
49 |
+
- **License:** Apache 2.0
|
50 |
+
- **Finetuned from model:** [google/flan-t5-small](https://huggingface.co/google/flan-t5-small)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
## Uses
|
53 |
|
|
|
87 |
|
88 |
Use the code below to get started with the model.
|
89 |
|
90 |
+
```python
|
91 |
+
# Load model directly
|
92 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
93 |
+
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained("philipp-zettl/t5-small-tydiqa-en")
|
95 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("philipp-zettl/t5-small-tydiqa-en")
|
96 |
+
|
97 |
+
question = "Some question?"
|
98 |
+
# For instance retrieved using similarity search
|
99 |
+
context = "A long context ..."
|
100 |
+
|
101 |
+
inputs = [f"question: {q} context: {c}" for q, c in [[question, context]]]
|
102 |
+
model_inputs = tokenizer(inputs, max_length=512, padding=True, truncation=True)
|
103 |
+
input_ids = torch.tensor(model_inputs['input_ids']).to(device)
|
104 |
+
attention_mask = torch.tensor(model_inputs['attention_mask']).to(device)
|
105 |
+
with torch.no_grad():
|
106 |
+
sample_output = model.generate(input_ids[:1], max_length=100)
|
107 |
+
sample_output_text = tokenizer.decode(sample_output[0], skip_special_tokens=True)
|
108 |
+
input_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
109 |
+
print(f"Sample Input", input_text)
|
110 |
+
print(f"Sample Output", sample_output_text)
|
111 |
+
```
|
112 |
|
113 |
## Training Details
|
114 |
|
115 |
### Training Data
|
116 |
|
117 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
118 |
+
Trained on the english samples of [google-research-datasets/tydiqa](https://huggingface.co/datasets/google-research-datasets/tydiqa) using following code
|
119 |
+
```python
|
120 |
+
from datasets import load_dataset
|
121 |
|
122 |
+
# Load SQuAD dataset
|
123 |
+
squad_dataset = load_dataset('google-research-datasets/tydiqa', 'secondary_task')
|
124 |
+
|
125 |
+
# Split the dataset into training and validation
|
126 |
+
train_dataset = squad_dataset['train'].filter(lambda e: any([e['id'].startswith(lang) for lang in ['english']]))
|
127 |
+
validation_dataset = squad_dataset['validation'].filter(lambda e: any([e['id'].startswith(lang) for lang in ['english']]))
|
128 |
+
```
|
129 |
|
130 |
### Training Procedure
|
131 |
|
132 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
133 |
|
134 |
+
#### Preprocessing
|
135 |
+
Code for preprocessing
|
136 |
+
```python
|
137 |
+
def preprocess_batch(batch, tokenizer, max_input_length=512, max_output_length=128):
|
138 |
+
questions = batch['question']
|
139 |
+
contexts = batch['context']
|
140 |
+
answers = [answer['text'][0] for answer in batch['answers']]
|
141 |
|
142 |
+
inputs = [f"question: {q} context: {c}" for q, c in zip(questions, contexts)]
|
143 |
+
model_inputs = tokenizer(inputs, max_length=max_input_length, padding=True, truncation=True)
|
144 |
|
145 |
+
labels = tokenizer(answers, max_length=max_output_length, padding=True, truncation=True)
|
146 |
+
model_inputs['labels'] = labels['input_ids']
|
147 |
|
148 |
+
return model_inputs
|
149 |
|
150 |
+
# Tokenize the dataset
|
151 |
+
train_dataset = train_dataset.map(lambda batch: preprocess_batch(batch, teacher_tokenizer), batched=True)
|
152 |
+
validation_dataset = validation_dataset.map(lambda batch: preprocess_batch(batch, teacher_tokenizer), batched=True)
|
153 |
|
154 |
+
# Set format for PyTorch
|
155 |
+
train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
156 |
+
validation_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
157 |
+
```
|
158 |
|
|
|
159 |
|
160 |
+
#### Training Hyperparameters
|
161 |
+
Code of training loop:
|
162 |
+
```python
|
163 |
+
from tqdm import tqdm
|
164 |
+
from transformers import AdamW, DataCollatorForSeq2Seq
|
165 |
+
from torch.utils.data import DataLoader
|
166 |
+
from torch.utils.tensorboard import SummaryWriter
|
167 |
+
|
168 |
+
torch.cuda.empty_cache()
|
169 |
+
|
170 |
+
teacher_model.to(device)
|
171 |
+
|
172 |
+
# Training parameters
|
173 |
+
epochs = 3
|
174 |
+
learning_rate = 5e-5
|
175 |
+
temperature = 2.0
|
176 |
+
batch_size = 2
|
177 |
+
optimizer = torch.optim.AdamW(teacher_model.parameters(), lr=learning_rate)
|
178 |
+
|
179 |
+
# Create a data collator for padding and batching
|
180 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer=teacher_tokenizer, model=teacher_model)
|
181 |
+
|
182 |
+
# Create DataLoaders with the data collator
|
183 |
+
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=data_collator)
|
184 |
+
validation_dataloader = DataLoader(validation_dataset, batch_size=batch_size, collate_fn=data_collator)
|
185 |
+
|
186 |
+
writer = SummaryWriter('./logs', comment='t5-base')
|
187 |
+
|
188 |
+
print("Starting training...")
|
189 |
+
|
190 |
+
# Training loop
|
191 |
+
for epoch in range(epochs):
|
192 |
+
teacher_model.train()
|
193 |
+
total_loss = 0
|
194 |
+
print(f"Epoch {epoch+1}/{epochs}")
|
195 |
+
|
196 |
+
progress_bar = tqdm(train_dataloader, desc="Training", leave=False)
|
197 |
+
|
198 |
+
for step, batch in enumerate(progress_bar):
|
199 |
+
# Move student inputs to GPU
|
200 |
+
input_ids = batch['input_ids'].to(device)
|
201 |
+
attention_mask = batch['attention_mask'].to(device)
|
202 |
+
labels = batch['labels'].to(device)
|
203 |
+
|
204 |
+
# Teacher forward pass on CPU
|
205 |
+
teacher_outputs = teacher_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
206 |
+
teacher_logits = teacher_outputs.logits
|
207 |
+
|
208 |
+
# Calculate losses
|
209 |
+
loss = teacher_outputs.loss # Cross-entropy loss
|
210 |
+
writer.add_scalar("Loss/train", loss, step)
|
211 |
+
|
212 |
+
# Backpropagation
|
213 |
+
optimizer.zero_grad()
|
214 |
+
loss.backward()
|
215 |
+
optimizer.step()
|
216 |
+
|
217 |
+
total_loss += loss.item()
|
218 |
+
|
219 |
+
# Verbose logging
|
220 |
+
if step % 1 == 0 or step == len(train_dataloader) - 1:
|
221 |
+
progress_bar.set_postfix({
|
222 |
+
'step': step,
|
223 |
+
'loss': loss.item(),
|
224 |
+
})
|
225 |
+
|
226 |
+
# Generate a sample output from the student model
|
227 |
+
teacher_model.eval()
|
228 |
+
with torch.no_grad():
|
229 |
+
sample_output = teacher_model.generate(input_ids[:1], max_length=50)
|
230 |
+
sample_output_text = teacher_tokenizer.decode(sample_output[0], skip_special_tokens=True)
|
231 |
+
input_text = teacher_tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
232 |
+
writer.add_text(f"Sample Input", input_text, step)
|
233 |
+
writer.add_text(f"Sample Output", sample_output_text, step)
|
234 |
+
teacher_model.train()
|
235 |
+
|
236 |
+
avg_loss = total_loss / len(train_dataloader)
|
237 |
+
print(f"Epoch {epoch+1} completed. Average Loss: {avg_loss:.4f}")
|
238 |
+
writer.add_scalar("AVG Loss/train", avg_loss, epoch)
|
239 |
+
|
240 |
+
print("Training complete.")
|
241 |
+
writer.close()
|
242 |
+
```
|
243 |
|
244 |
## Evaluation
|
245 |
|