chessPT / train.py
philipp-zettl's picture
update train script
ece90a2 verified
import re
import argparse
import json
import torch
import torch.nn as nn
from tqdm import tqdm
from torch.nn import functional as F
from gpt_p.model import DecoderTransformer
from torch.optim.lr_scheduler import _LRScheduler
import math
from datasets import load_dataset
import wandb
torch.manual_seed(420) # 1337
base_name = 'gpt-p_CHARS_CHAT_'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
context_size = 256 # how many tokens to consider while generating the next
batch_size = 128 # how many independent sequences will we process in parallel
max_iters = 50_000
learning_rate = 3e-5
eval_interval = 100
eval_iters = 20 # number evaluation iterations
n_embed = 384 # embedding size
n_layer = 6 # number of transformer layers
n_head = 6
dropout = 0.2 # dropout factor
mask_all_data = True
use_scheduler = False
dataset = load_dataset('Lichess/standard-chess-games', '2014-08', split='train')
og_samples = list(filter(lambda x: 'eval' not in x, dataset['movetext']))
new_dataset = load_dataset('Lichess/standard-chess-games', '2024-07', split='train', data_files=[f'data/year=2024/month=07/train-{str(i).zfill(5)}-of-00384.parquet' for i in range(10)])
new_dataset = [re.sub('[0-9]+\.\.\.', '', re.sub('{[^\}]*}', '', foo)).replace(' ', ' ').replace(' ', ' ') for foo in dataset['movetext']]
og_samples += new_dataset
if mask_all_data:
content = '\n'.join(list(filter(lambda x: 'eval' not in x, dataset['movetext'])))
else:
content = og_samples
print('Data loaded')
print('Training on ', len(content), 'characters. Good luck!')
## BUILD DATA SET ##
# load data
#with open('data.txt', 'r') as f:
# content = f.read()
book = content
if mask_all_data:
characters = sorted(list(set(book)))
else:
characters = sorted(list(set('\n'.join(book))))
vocab_size = len(characters)
# convert
class Tokenizer:
def __init__(self, vocab):
self.vocab = vocab
self.stoi = {ch: idx for idx, ch in enumerate(vocab)}
self.itos = {idx: ch for idx, ch in enumerate(vocab)}
def encode(self, s):
return [self.stoi[c] for c in s]
def decode(self, i):
return ''.join([self.itos[x] for x in i])
@classmethod
def from_pretrained(cls, path):
with open(path, 'r') as f:
vocab = json.load(f)
return cls(vocab)
def save_pretrained(self, path):
with open(path, 'w') as f:
json.dump(self.vocab, f)
tokenizer = Tokenizer(characters)
encode = tokenizer.encode
decode = tokenizer.decode
if mask_all_data:
data = torch.tensor(encode(book), dtype=torch.long)
else:
data = [torch.tensor(encode(s), dtype=torch.long) for s in book]
max_len = max(len(x) for x in og_samples)
context_size = min(context_size, max_len)
n = int(0.8 * len(data))
train_data = data[:n]
val_data = data[n:]
# Constants for piece movement validation
PIECE_VALUES = {
'P': 1, 'N': 3, 'B': 3, 'R': 5, 'Q': 9, 'K': 0, # White pieces
'p': 1, 'n': 3, 'b': 3, 'r': 5, 'q': 9, 'k': 0 # Black pieces
}
def initialize_board():
"""Initializes the standard chessboard setup."""
return [
['r', 'n', 'b', 'q', 'k', 'b', 'n', 'r'], # 8th rank (Black)
['p', 'p', 'p', 'p', 'p', 'p', 'p', 'p'], # 7th rank (Black)
['.', '.', '.', '.', '.', '.', '.', '.'], # 6th rank
['.', '.', '.', '.', '.', '.', '.', '.'], # 5th rank
['.', '.', '.', '.', '.', '.', '.', '.'], # 4th rank
['.', '.', '.', '.', '.', '.', '.', '.'], # 3rd rank
['P', 'P', 'P', 'P', 'P', 'P', 'P', 'P'], # 2nd rank (White)
['R', 'N', 'B', 'Q', 'K', 'B', 'N', 'R'] # 1st rank (White)
]
def get_piece(board, position):
"""Returns the piece at a given board position (e.g., e4 -> 'P' or '.')."""
col = ord(position[0]) - ord('a')
row = 8 - int(position[1])
return board[row][col]
def set_piece(board, position, piece):
"""Sets a piece on the board at a given position."""
col = ord(position[0]) - ord('a')
row = 8 - int(position[1])
board[row][col] = piece
def validate_pawn_move(board, start, end, is_white_turn):
"""Validates pawn movement including capturing, advancing, and promotion."""
start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1])
end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1])
pawn_direction = -1 if is_white_turn else 1 # White moves up, black moves down
# Regular forward move
if start_col == end_col and board[end_row][end_col] == '.':
if start_row + pawn_direction == end_row: # 1 square move
return True
if (is_white_turn and start_row == 6 or not is_white_turn and start_row == 1) and start_row + 2 * pawn_direction == end_row:
return True
# Capture
if abs(start_col - end_col) == 1 and start_row + pawn_direction == end_row:
target_piece = board[end_row][end_col]
if (is_white_turn and target_piece.islower()) or (not is_white_turn and target_piece.isupper()):
return True
return False
def validate_knight_move(start, end):
"""Validates knight movement (L-shape)."""
start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1])
end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1])
col_diff = abs(start_col - end_col)
row_diff = abs(start_row - end_row)
return (col_diff == 2 and row_diff == 1) or (col_diff == 1 and row_diff == 2)
def validate_rook_move(board, start, end):
"""Validates rook movement (straight lines along rank or file)."""
start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1])
end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1])
if start_col != end_col and start_row != end_row:
return False # Must be either same column or row
# Check if path is clear
if start_col == end_col:
step = 1 if end_row > start_row else -1
for row in range(start_row + step, end_row, step):
if board[row][start_col] != '.':
return False
else:
step = 1 if end_col > start_col else -1
for col in range(start_col + step, end_col, step):
if board[start_row][col] != '.':
return False
return True
def validate_bishop_move(board, start, end):
"""Validates bishop movement (diagonals)."""
start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1])
end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1])
if abs(start_col - end_col) != abs(start_row - end_row):
return False # Must move diagonally
# Check if path is clear
col_step = 1 if end_col > start_col else -1
row_step = 1 if end_row > start_row else -1
col, row = start_col + col_step, start_row + row_step
while col != end_col and row != end_row:
if board[row][col] != '.':
return False
col += col_step
row += row_step
return True
def validate_move(board, move, is_white_turn):
"""Validates a move based on the current board state."""
if move == "O-O" or move == "O-O-O":
return True # Castling placeholder
piece_type = 'P' if move[0].islower() else move[0]
start = move[-2:] # Simplification; would need to parse actual source square
end = move[-2:] # Actual end position is the destination
if piece_type == 'P':
return validate_pawn_move(board, start, end, is_white_turn)
elif piece_type == 'N':
return validate_knight_move(start, end)
elif piece_type == 'R':
return validate_rook_move(board, start, end)
elif piece_type == 'B':
return validate_bishop_move(board, start, end)
# Other pieces can be added similarly
return True # Placeholder for other pieces
def update_board(board, move, is_white_turn):
"""Updates the board according to the move."""
start = move[-2:]
end = move[-2:]
piece = get_piece(board, start)
# Move the piece
set_piece(board, end, piece)
set_piece(board, start, '.')
return board # Placeholder for now
def validate_pgn(pgn_string):
"""
Validates the PGN string format and chess move legality.
"""
move_pattern = r'([PNBRQK]?[a-h]?[1-8]?[x]?[a-h][1-8](=[QRNB])?|O-O(-O)?)[+#]?' # Chess move
result_pattern = r'(1-0|0-1|1/2-1/2)' # Game results
tag_pattern = r'\[([A-Za-z0-9_]+)\s+"([^"]+)"\]' # PGN tags
pgn_lines = pgn_string.strip().splitlines()
tags = [line for line in pgn_lines if line.startswith('[')]
for tag in tags:
if not re.match(tag_pattern, tag):
return False # Invalid tag format
moves_section = ' '.join([line for line in pgn_lines if not line.startswith('[')]).strip()
if not re.search(result_pattern, moves_section):
return False # No valid result found
moves_section = re.sub(result_pattern, '', moves_section).strip()
board = initialize_board()
is_white_turn = True
move_tokens = re.split(r'\s|\d+\.', moves_section)
for token in move_tokens:
if token:
if not re.match(move_pattern, token):
return False # Invalid move format
if not validate_move(board, token, is_white_turn):
return False # Invalid chess move
board = update_board(board, token, is_white_turn)
is_white_turn = not is_white_turn
return True
# Test case
pgn_string = """
[Event "World Championship"]
[Site "Moscow URS"]
[Date "1985.11.09"]
[Round "16"]
[White "Kasparov, Garry"]
[Black "Karpov, Anatoly"]
[Result "1-0"]
1. e4 e5 2. Nf3 Nc6 3. Bb5 a6 4. Ba4 Nf6 5. O-O Be7 6. Re1 b5 7. Bb3 d6
8. c3 O-O 9. h3 Nb8 10. d4 Nbd7 11. c4 Bb7 12. Nbd2 c6 13. Bc2 Re8 14. b3 Bf8
15. Bb2 Qc7 16. Rc1 Rad8 17. a3 Qb8 18. Bd3 g6 19. Qc2 Nh5 20. g3 Ng7 21. Qb1
exd4 22. Nxd4 c5 23. N4f3 Ne6 24. Bf1 Ne5 25. Qa1 Nxf3+ 26. Nxf3 Qa8 27. b4
Rc8 28. Bd3 Bh6 29. Rc2 Bc6 30. h4 f5 31. exf5 Bxf3 32. fxe6 Bh1 33. Bf1 Qf3
34. Re2 Bg7 35. Kh2 Rc7 36. Bxg7 Rxg7 37. Qf6 bxc4 38. e7 Qxf6 39. exf6 1-0
"""
def get_batch_from_samples(split):
data = train_data if split == 'train' else val_data
sample_idx = torch.randint(len(data), (batch_size,))
inputs = []
outputs = []
space = encode(' ')[0]
for idx in sample_idx:
sample_size = len(data[idx])
start = torch.randint(max(sample_size - 2, sample_size - context_size), (1,))
end = start + context_size
i1 = data[idx][start:end].tolist()
i2 = [space] * (context_size - len(i1))
input_sample = torch.tensor(i1 + i2)
o1 = data[idx][start+1:end+1].tolist()
o2 = [space] * (context_size - len(o1))
output_sample = torch.tensor(o1 + o2)
inputs.append(input_sample)
outputs.append(output_sample)
x = torch.stack(inputs)
y = torch.stack(outputs)
return x.to(device), y.to(device)
def get_batch(split):
data = train_data if split == 'train' else val_data
idx = torch.randint(len(data) - context_size, (batch_size,))
x = torch.stack([data[i:i+context_size] for i in idx])
y = torch.stack([data[i+1:i+context_size+1] for i in idx])
return x.to(device), y.to(device)
if not mask_all_data:
get_batch = get_batch_from_samples
## END BUILD DATA SET ##
## MODEL DEFINITION ##
def print_sample(input_value=None):
if input_value is None:
input_value = torch.zeros((1,1), dtype=torch.long, device=device)
print('Validation sample:')
sample = decode(model.generate(input_value, max_new_tokens=250, context_size=context_size)[0].tolist())
if '<E>' in sample:
sample = sample[:sample.find('<E>') + 3]
print(sample)
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
"""
input_string = X[0].tolist()
gen = model.generate(X[0].view(1, -1), max_new_tokens=5, context_size=context_size)
o = tokenizer.decode(gen[0].tolist())
try:
valid = int(not validate_pgn(o))
except Exception:
valid = 2
"""
losses[k] = loss.item()
out[split] = losses.mean()
input_string = '1. e4 g6 2.'
print_sample(torch.tensor(encode(input_string), dtype=torch.long, device=device).view((1, len(input_string))))
model.train()
return out
class CosineAnnealingScheduler(_LRScheduler):
def __init__(self, optimizer, T_max, eta_min=0, last_epoch=-1):
"""
Args:
optimizer (Optimizer): Wrapped optimizer.
T_max (int): Maximum number of iterations.
eta_min (float): Minimum learning rate. Default: 0.
last_epoch (int): The index of last epoch. Default: -1.
"""
self.T_max = T_max
self.eta_min = eta_min
super().__init__(optimizer, last_epoch)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn("To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.", UserWarning)
if self.last_epoch == 0:
return [group['lr'] for group in self.optimizer.param_groups]
elif self._step_count == 1 and self.last_epoch > 0:
return [self.eta_min + (base_lr - self.eta_min) *
(1 + math.cos((self.last_epoch) * math.pi / self.T_max)) / 2
for base_lr in self.base_lrs]
elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
return [group['lr'] + (base_lr - self.eta_min) *
(1 - math.cos(math.pi / self.T_max)) / 2
for base_lr, group in
zip(self.base_lrs, self.optimizer.param_groups)]
return [(1 + math.cos(math.pi * self.last_epoch / self.T_max)) /
(1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) *
(group['lr'] - self.eta_min) + self.eta_min
for group in self.optimizer.param_groups]
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument('--load', '-l', action='store_true', default=False, help='Load model state.')
args.add_argument('--inference', '-i', action='store_true', default=False, help='Run only inference')
args = args.parse_args()
params = {'vocab_size': vocab_size, 'n_embed': n_embed, 'context_size': context_size, 'n_layer': n_layer, 'n_head': n_head, 'dropout': dropout}
if args.load:
m = DecoderTransformer(vocab_size, n_embed, context_size, n_layer, n_head, dropout)
m.load_state_dict(torch.load(f'./models/{base_name}'))# + ''.join(f'{key}={v}' for key, v in params.items())))
else:
m = DecoderTransformer(vocab_size, n_embed, context_size, n_layer, n_head, dropout)
model = m.to(device)
if args.inference:
input_string = input('Enter a PGN string: ')
print_sample(torch.tensor(encode(input_string), dtype=torch.long, device=device).view((1, len(input_string))))
with open(f'./models/{base_name}_params.json', 'w') as f:
json.dump(params, f)
tokenizer.save_pretrained(f'./models/{base_name}_vocab.json')
exit()
## END MODEL ##
## START TRAINING ##
wandb.init(project='chessPT')
wandb.watch(model)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
if use_scheduler:
scheduler = CosineAnnealingScheduler(optimizer, max_iters, eta_min=learning_rate//1e6)
for step in tqdm(range(max_iters), total=max_iters, desc='Training'):
if step % eval_interval == 0:
losses = estimate_loss()
if use_scheduler:
print(f'step {step:4d}: train loss {losses["train"]:.4f}, val loss: {losses["val"]:.4f}, lr: {scheduler.get_last_lr()[0]}')
else:
print(f'step {step:4d}: train loss {losses["train"]:.4f}, val loss: {losses["val"]:.4f}')
wandb.log({'train_loss': losses['train'], 'val_loss': losses['val']})
xb, yb = get_batch('train')
logits, loss = model(xb, yb)
"""
input_string = xb[0].tolist()
gen = model.generate(xb[0].view(1, -1), max_new_tokens=5, context_size=context_size)
out = tokenizer.decode(gen[0].tolist())
try:
valid = int(not validate_pgn(out))
except Exception:
valid = 2
loss += valid
"""
if use_scheduler:
wandb.log({'running_train_loss': loss.item(), 'lr': scheduler.get_last_lr()[0]})
else:
wandb.log({'running_train_loss': loss.item()})
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
if use_scheduler:
scheduler.step()
print()
print('Loss:')
print(loss.item())
## END TRAINING ##
## START VALIDATION ##
## END VALIDATION ##
# save model weights
torch.save(model.state_dict(), f'./models/{base_name}')
with open(f'./models/{base_name}_params.json', 'w') as f:
json.dump(params, f)
with open('train.log', 'a') as f:
f.write(f'{max_iters},{learning_rate}\n')