--- license: mit base_model: xlnet-base-cased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: trueparagraph.ai-xlnet results: [] --- # trueparagraph.ai-xlnet This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Accuracy: 0.8951 - F1: 0.8984 - Precision: 0.8674 - Recall: 0.9316 - Mcc: 0.7924 - Roc Auc: 0.8952 - Pr Auc: 0.8421 - Log Loss: 1.8813 - Loss: 0.2913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Precision | Recall | Mcc | Roc Auc | Pr Auc | Log Loss | Validation Loss | |:-------------:|:------:|:----:|:--------:|:------:|:---------:|:------:|:------:|:-------:|:------:|:--------:|:---------------:| | 0.649 | 0.6297 | 500 | 0.8006 | 0.8195 | 0.7457 | 0.9095 | 0.6164 | 0.8010 | 0.7233 | 4.0119 | 0.4063 | | 0.4104 | 1.2594 | 1000 | 0.8409 | 0.8294 | 0.8892 | 0.7772 | 0.6870 | 0.8406 | 0.8020 | 2.4398 | 0.4054 | | 0.4101 | 1.8892 | 1500 | 0.8100 | 0.8359 | 0.7332 | 0.9722 | 0.6560 | 0.8107 | 0.7266 | 3.4982 | 0.4405 | | 0.4046 | 2.5189 | 2000 | 0.7754 | 0.8120 | 0.6959 | 0.9747 | 0.6012 | 0.7762 | 0.6909 | 3.0282 | 0.5111 | | 0.3992 | 3.1486 | 2500 | 0.8664 | 0.8625 | 0.8843 | 0.8418 | 0.7336 | 0.8663 | 0.8232 | 2.7164 | 0.3871 | | 0.3691 | 3.7783 | 3000 | 0.8774 | 0.8850 | 0.8303 | 0.9475 | 0.7626 | 0.8777 | 0.8128 | 1.8936 | 0.3413 | | 0.2581 | 4.4081 | 3500 | 0.8951 | 0.8984 | 0.8674 | 0.9316 | 0.7924 | 0.8952 | 0.8421 | 1.8813 | 0.2913 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1