File size: 1,906 Bytes
bd32881 cab58dd bd32881 cab58dd bd32881 cab58dd bd32881 cab58dd bd32881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
base_model: indobenchmark/indobart-v2
tags:
- generated_from_trainer
datasets:
- squad
metrics:
- rouge
model-index:
- name: results
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: squad
type: squad
config: plain_text
split: train[:1000]
args: plain_text
metrics:
- name: Rouge1
type: rouge
value: 16.2693
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [indobenchmark/indobart-v2](https://huggingface.co./indobenchmark/indobart-v2) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5998
- Rouge1: 16.2693
- Rouge2: 14.9952
- Rougel: 16.233
- Rougelsum: 16.2741
- Gen Len: 20.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:---------:|:-------:|
| 1.4819 | 1.0 | 200 | 1.5998 | 16.2693 | 14.9952 | 16.233 | 16.2741 | 20.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.2
- Tokenizers 0.13.3
|