File size: 4,457 Bytes
2dcb8f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: freeway_resnet50_Model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/huangyangyu/huggingface/runs/zbrisuho)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/huangyangyu/huggingface/runs/zbrisuho)
# freeway_resnet50_Model
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co./microsoft/resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0047
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.3403 | 0.4808 | 100 | 0.3006 | 0.9454 |
| 0.3093 | 0.9615 | 200 | 0.2498 | 0.9540 |
| 0.2743 | 1.4423 | 300 | 0.2004 | 0.9666 |
| 0.2375 | 1.9231 | 400 | 0.1552 | 0.9798 |
| 0.2118 | 2.4038 | 500 | 0.1143 | 0.9852 |
| 0.1953 | 2.8846 | 600 | 0.1095 | 0.9844 |
| 0.1807 | 3.3654 | 700 | 0.0893 | 0.9895 |
| 0.1623 | 3.8462 | 800 | 0.0682 | 0.9914 |
| 0.1414 | 4.3269 | 900 | 0.0560 | 0.9941 |
| 0.1296 | 4.8077 | 1000 | 0.0511 | 0.9933 |
| 0.1195 | 5.2885 | 1100 | 0.0344 | 0.9957 |
| 0.1114 | 5.7692 | 1200 | 0.0303 | 0.9984 |
| 0.1034 | 6.25 | 1300 | 0.0298 | 0.9965 |
| 0.0994 | 6.7308 | 1400 | 0.0257 | 0.9987 |
| 0.0907 | 7.2115 | 1500 | 0.0225 | 0.9992 |
| 0.0881 | 7.6923 | 1600 | 0.0201 | 0.9987 |
| 0.0801 | 8.1731 | 1700 | 0.0157 | 1.0 |
| 0.0764 | 8.6538 | 1800 | 0.0141 | 0.9995 |
| 0.0746 | 9.1346 | 1900 | 0.0142 | 0.9995 |
| 0.0715 | 9.6154 | 2000 | 0.0115 | 0.9995 |
| 0.074 | 10.0962 | 2100 | 0.0124 | 0.9992 |
| 0.0677 | 10.5769 | 2200 | 0.0102 | 0.9995 |
| 0.0679 | 11.0577 | 2300 | 0.0101 | 0.9995 |
| 0.068 | 11.5385 | 2400 | 0.0110 | 0.9992 |
| 0.0589 | 12.0192 | 2500 | 0.0081 | 0.9997 |
| 0.0581 | 12.5 | 2600 | 0.0090 | 0.9995 |
| 0.058 | 12.9808 | 2700 | 0.0080 | 0.9995 |
| 0.0559 | 13.4615 | 2800 | 0.0082 | 0.9997 |
| 0.0547 | 13.9423 | 2900 | 0.0062 | 1.0 |
| 0.0493 | 14.4231 | 3000 | 0.0061 | 1.0 |
| 0.0506 | 14.9038 | 3100 | 0.0054 | 1.0 |
| 0.0466 | 15.3846 | 3200 | 0.0068 | 0.9995 |
| 0.0506 | 15.8654 | 3300 | 0.0055 | 1.0 |
| 0.0481 | 16.3462 | 3400 | 0.0053 | 1.0 |
| 0.0523 | 16.8269 | 3500 | 0.0053 | 1.0 |
| 0.0537 | 17.3077 | 3600 | 0.0061 | 0.9995 |
| 0.0474 | 17.7885 | 3700 | 0.0049 | 1.0 |
| 0.0511 | 18.2692 | 3800 | 0.0054 | 1.0 |
| 0.0474 | 18.75 | 3900 | 0.0052 | 1.0 |
| 0.0456 | 19.2308 | 4000 | 0.0062 | 0.9997 |
| 0.0385 | 19.7115 | 4100 | 0.0047 | 1.0 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.1.1
- Datasets 2.19.2
- Tokenizers 0.19.1
|