--- license: apache-2.0 language: - de tags: - entity-linking - wikidata - umls --- SapBERT-DE is a model for German biomedical entity linking which is obtained by fine-tuning multilingual entity linking model [`cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR`](https://huggingface.co./cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR) using a German biomedical entity linking knowledge base named [UMLS-Wikidata](https://zenodo.org/records/11003203). # Usage ```python import numpy as np from tqdm import tqdm import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("permediq/SapBERT-DE", use_fast=True) model = AutoModel.from_pretrained("permediq/SapBERT-DE").cuda() # entity descriptions to embed entity_descriptions = ["Cerebellum", "Zerebellum", "Kleinhirn", "Anaesthesie"] bs = 32 # batch size all_embs = [] for i in tqdm(np.arange(0, len(entity_descriptions), bs)): toks = tokenizer.batch_encode_plus(entity_descriptions[i:i+bs], padding="max_length", max_length=40, # model trained with 40 max_length truncation=True, return_tensors="pt") toks_cuda = {} for k,v in toks.items(): toks_cuda[k] = v.cuda() cls_rep = model(**toks_cuda)[0][:,0,:] all_embs.append(cls_rep.cpu().detach()) all_embs = torch.cat(all_embs) def cos_sim(a, b): a_norm = torch.nn.functional.normalize(a, p=2, dim=1) b_norm = torch.nn.functional.normalize(b, p=2, dim=1) return torch.mm(a_norm, b_norm.transpose(0, 1)) # cosine similarity of first entity with all the entities print(cos_sim(all_embs[0].unsqueeze(0), all_embs)) # >>> tensor([[1.0000, 0.9337, 0.6206, 0.2086]]) ``` # BibTeX ```bash @inproceedings{mustafa-etal-2024-leveraging, title = "Leveraging {W}ikidata for Biomedical Entity Linking in a Low-Resource Setting: A Case Study for {G}erman", author = "Mustafa, Faizan E and Dima, Corina and Ochoa, Juan and Staab, Steffen", booktitle = "Proceedings of the 6th Clinical Natural Language Processing Workshop", month = jun, year = "2024", address = "Mexico City, Mexico", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.clinicalnlp-1.17", pages = "202--207", ```