peggia commited on
Commit
8f6fc13
·
verified ·
1 Parent(s): 05cd9b4

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. replay.mp4 +2 -2
  3. sf_log.txt +151 -0
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 9.34 +/- 5.46
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 10.82 +/- 5.55
19
  name: mean_reward
20
  verified: false
21
  ---
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c8371541153aca7abac123c15e6d2017e685f8e34aa21a3343f35ad758bdd247
3
- size 17795159
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d73a3b2efe969ee68202f695a6c28b5347ef3d2ac250a15921ddeb6a5ccb5082
3
+ size 20716353
sf_log.txt CHANGED
@@ -1109,3 +1109,154 @@ main_loop: 1103.2292
1109
  [2024-12-02 14:39:33,050][00408] Avg episode rewards: #0: 21.439, true rewards: #0: 9.339
1110
  [2024-12-02 14:39:33,052][00408] Avg episode reward: 21.439, avg true_objective: 9.339
1111
  [2024-12-02 14:40:32,888][00408] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109
  [2024-12-02 14:39:33,050][00408] Avg episode rewards: #0: 21.439, true rewards: #0: 9.339
1110
  [2024-12-02 14:39:33,052][00408] Avg episode reward: 21.439, avg true_objective: 9.339
1111
  [2024-12-02 14:40:32,888][00408] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1112
+ [2024-12-02 14:40:41,662][00408] The model has been pushed to https://huggingface.co/peggia/rl_course_vizdoom_health_gathering_supreme
1113
+ [2024-12-02 14:43:01,181][00408] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1114
+ [2024-12-02 14:43:01,184][00408] Overriding arg 'num_workers' with value 1 passed from command line
1115
+ [2024-12-02 14:43:01,185][00408] Adding new argument 'no_render'=True that is not in the saved config file!
1116
+ [2024-12-02 14:43:01,187][00408] Adding new argument 'save_video'=True that is not in the saved config file!
1117
+ [2024-12-02 14:43:01,189][00408] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1118
+ [2024-12-02 14:43:01,193][00408] Adding new argument 'video_name'=None that is not in the saved config file!
1119
+ [2024-12-02 14:43:01,194][00408] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
1120
+ [2024-12-02 14:43:01,196][00408] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1121
+ [2024-12-02 14:43:01,202][00408] Adding new argument 'push_to_hub'=True that is not in the saved config file!
1122
+ [2024-12-02 14:43:01,203][00408] Adding new argument 'hf_repository'='peggia/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
1123
+ [2024-12-02 14:43:01,204][00408] Adding new argument 'policy_index'=0 that is not in the saved config file!
1124
+ [2024-12-02 14:43:01,204][00408] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1125
+ [2024-12-02 14:43:01,205][00408] Adding new argument 'train_script'=None that is not in the saved config file!
1126
+ [2024-12-02 14:43:01,206][00408] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1127
+ [2024-12-02 14:43:01,208][00408] Using frameskip 1 and render_action_repeat=4 for evaluation
1128
+ [2024-12-02 14:43:01,239][00408] RunningMeanStd input shape: (3, 72, 128)
1129
+ [2024-12-02 14:43:01,242][00408] RunningMeanStd input shape: (1,)
1130
+ [2024-12-02 14:43:01,256][00408] ConvEncoder: input_channels=3
1131
+ [2024-12-02 14:43:01,294][00408] Conv encoder output size: 512
1132
+ [2024-12-02 14:43:01,295][00408] Policy head output size: 512
1133
+ [2024-12-02 14:43:01,317][00408] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
1134
+ [2024-12-02 14:43:01,758][00408] Num frames 100...
1135
+ [2024-12-02 14:43:01,877][00408] Num frames 200...
1136
+ [2024-12-02 14:43:02,020][00408] Num frames 300...
1137
+ [2024-12-02 14:43:02,147][00408] Num frames 400...
1138
+ [2024-12-02 14:43:02,280][00408] Num frames 500...
1139
+ [2024-12-02 14:43:02,432][00408] Avg episode rewards: #0: 8.760, true rewards: #0: 5.760
1140
+ [2024-12-02 14:43:02,434][00408] Avg episode reward: 8.760, avg true_objective: 5.760
1141
+ [2024-12-02 14:43:02,467][00408] Num frames 600...
1142
+ [2024-12-02 14:43:02,588][00408] Num frames 700...
1143
+ [2024-12-02 14:43:02,707][00408] Num frames 800...
1144
+ [2024-12-02 14:43:02,830][00408] Num frames 900...
1145
+ [2024-12-02 14:43:02,955][00408] Num frames 1000...
1146
+ [2024-12-02 14:43:03,079][00408] Num frames 1100...
1147
+ [2024-12-02 14:43:03,206][00408] Num frames 1200...
1148
+ [2024-12-02 14:43:03,338][00408] Num frames 1300...
1149
+ [2024-12-02 14:43:03,456][00408] Num frames 1400...
1150
+ [2024-12-02 14:43:03,574][00408] Num frames 1500...
1151
+ [2024-12-02 14:43:03,694][00408] Num frames 1600...
1152
+ [2024-12-02 14:43:03,820][00408] Num frames 1700...
1153
+ [2024-12-02 14:43:03,943][00408] Num frames 1800...
1154
+ [2024-12-02 14:43:04,070][00408] Num frames 1900...
1155
+ [2024-12-02 14:43:04,188][00408] Num frames 2000...
1156
+ [2024-12-02 14:43:04,317][00408] Num frames 2100...
1157
+ [2024-12-02 14:43:04,441][00408] Num frames 2200...
1158
+ [2024-12-02 14:43:04,565][00408] Num frames 2300...
1159
+ [2024-12-02 14:43:04,664][00408] Avg episode rewards: #0: 28.180, true rewards: #0: 11.680
1160
+ [2024-12-02 14:43:04,666][00408] Avg episode reward: 28.180, avg true_objective: 11.680
1161
+ [2024-12-02 14:43:04,744][00408] Num frames 2400...
1162
+ [2024-12-02 14:43:04,861][00408] Num frames 2500...
1163
+ [2024-12-02 14:43:04,988][00408] Num frames 2600...
1164
+ [2024-12-02 14:43:05,105][00408] Num frames 2700...
1165
+ [2024-12-02 14:43:05,223][00408] Num frames 2800...
1166
+ [2024-12-02 14:43:05,352][00408] Num frames 2900...
1167
+ [2024-12-02 14:43:05,477][00408] Num frames 3000...
1168
+ [2024-12-02 14:43:05,601][00408] Num frames 3100...
1169
+ [2024-12-02 14:43:05,666][00408] Avg episode rewards: #0: 24.350, true rewards: #0: 10.350
1170
+ [2024-12-02 14:43:05,668][00408] Avg episode reward: 24.350, avg true_objective: 10.350
1171
+ [2024-12-02 14:43:05,792][00408] Num frames 3200...
1172
+ [2024-12-02 14:43:05,911][00408] Num frames 3300...
1173
+ [2024-12-02 14:43:06,042][00408] Num frames 3400...
1174
+ [2024-12-02 14:43:06,168][00408] Num frames 3500...
1175
+ [2024-12-02 14:43:06,291][00408] Num frames 3600...
1176
+ [2024-12-02 14:43:06,420][00408] Num frames 3700...
1177
+ [2024-12-02 14:43:06,539][00408] Num frames 3800...
1178
+ [2024-12-02 14:43:06,657][00408] Num frames 3900...
1179
+ [2024-12-02 14:43:06,778][00408] Num frames 4000...
1180
+ [2024-12-02 14:43:06,892][00408] Avg episode rewards: #0: 24.370, true rewards: #0: 10.120
1181
+ [2024-12-02 14:43:06,894][00408] Avg episode reward: 24.370, avg true_objective: 10.120
1182
+ [2024-12-02 14:43:06,968][00408] Num frames 4100...
1183
+ [2024-12-02 14:43:07,090][00408] Num frames 4200...
1184
+ [2024-12-02 14:43:07,210][00408] Num frames 4300...
1185
+ [2024-12-02 14:43:07,332][00408] Num frames 4400...
1186
+ [2024-12-02 14:43:07,466][00408] Num frames 4500...
1187
+ [2024-12-02 14:43:07,591][00408] Num frames 4600...
1188
+ [2024-12-02 14:43:07,710][00408] Num frames 4700...
1189
+ [2024-12-02 14:43:07,831][00408] Num frames 4800...
1190
+ [2024-12-02 14:43:07,960][00408] Num frames 4900...
1191
+ [2024-12-02 14:43:08,109][00408] Avg episode rewards: #0: 23.952, true rewards: #0: 9.952
1192
+ [2024-12-02 14:43:08,111][00408] Avg episode reward: 23.952, avg true_objective: 9.952
1193
+ [2024-12-02 14:43:08,145][00408] Num frames 5000...
1194
+ [2024-12-02 14:43:08,270][00408] Num frames 5100...
1195
+ [2024-12-02 14:43:08,396][00408] Num frames 5200...
1196
+ [2024-12-02 14:43:08,514][00408] Num frames 5300...
1197
+ [2024-12-02 14:43:08,634][00408] Num frames 5400...
1198
+ [2024-12-02 14:43:08,765][00408] Num frames 5500...
1199
+ [2024-12-02 14:43:08,883][00408] Num frames 5600...
1200
+ [2024-12-02 14:43:09,017][00408] Num frames 5700...
1201
+ [2024-12-02 14:43:09,141][00408] Num frames 5800...
1202
+ [2024-12-02 14:43:09,260][00408] Num frames 5900...
1203
+ [2024-12-02 14:43:09,385][00408] Num frames 6000...
1204
+ [2024-12-02 14:43:09,556][00408] Num frames 6100...
1205
+ [2024-12-02 14:43:09,728][00408] Num frames 6200...
1206
+ [2024-12-02 14:43:09,895][00408] Num frames 6300...
1207
+ [2024-12-02 14:43:10,073][00408] Num frames 6400...
1208
+ [2024-12-02 14:43:10,240][00408] Num frames 6500...
1209
+ [2024-12-02 14:43:10,319][00408] Avg episode rewards: #0: 25.520, true rewards: #0: 10.853
1210
+ [2024-12-02 14:43:10,321][00408] Avg episode reward: 25.520, avg true_objective: 10.853
1211
+ [2024-12-02 14:43:10,494][00408] Num frames 6600...
1212
+ [2024-12-02 14:43:10,662][00408] Num frames 6700...
1213
+ [2024-12-02 14:43:10,829][00408] Num frames 6800...
1214
+ [2024-12-02 14:43:11,001][00408] Num frames 6900...
1215
+ [2024-12-02 14:43:11,171][00408] Num frames 7000...
1216
+ [2024-12-02 14:43:11,362][00408] Num frames 7100...
1217
+ [2024-12-02 14:43:11,545][00408] Num frames 7200...
1218
+ [2024-12-02 14:43:11,717][00408] Num frames 7300...
1219
+ [2024-12-02 14:43:11,913][00408] Num frames 7400...
1220
+ [2024-12-02 14:43:12,089][00408] Num frames 7500...
1221
+ [2024-12-02 14:43:12,212][00408] Num frames 7600...
1222
+ [2024-12-02 14:43:12,336][00408] Num frames 7700...
1223
+ [2024-12-02 14:43:12,455][00408] Num frames 7800...
1224
+ [2024-12-02 14:43:12,586][00408] Num frames 7900...
1225
+ [2024-12-02 14:43:12,707][00408] Num frames 8000...
1226
+ [2024-12-02 14:43:12,831][00408] Num frames 8100...
1227
+ [2024-12-02 14:43:12,958][00408] Num frames 8200...
1228
+ [2024-12-02 14:43:13,080][00408] Num frames 8300...
1229
+ [2024-12-02 14:43:13,206][00408] Num frames 8400...
1230
+ [2024-12-02 14:43:13,330][00408] Num frames 8500...
1231
+ [2024-12-02 14:43:13,453][00408] Num frames 8600...
1232
+ [2024-12-02 14:43:13,527][00408] Avg episode rewards: #0: 30.445, true rewards: #0: 12.303
1233
+ [2024-12-02 14:43:13,530][00408] Avg episode reward: 30.445, avg true_objective: 12.303
1234
+ [2024-12-02 14:43:13,649][00408] Num frames 8700...
1235
+ [2024-12-02 14:43:13,774][00408] Num frames 8800...
1236
+ [2024-12-02 14:43:13,894][00408] Num frames 8900...
1237
+ [2024-12-02 14:43:14,024][00408] Num frames 9000...
1238
+ [2024-12-02 14:43:14,146][00408] Num frames 9100...
1239
+ [2024-12-02 14:43:14,268][00408] Num frames 9200...
1240
+ [2024-12-02 14:43:14,390][00408] Num frames 9300...
1241
+ [2024-12-02 14:43:14,517][00408] Num frames 9400...
1242
+ [2024-12-02 14:43:14,647][00408] Num frames 9500...
1243
+ [2024-12-02 14:43:14,769][00408] Num frames 9600...
1244
+ [2024-12-02 14:43:14,893][00408] Num frames 9700...
1245
+ [2024-12-02 14:43:15,020][00408] Num frames 9800...
1246
+ [2024-12-02 14:43:15,142][00408] Num frames 9900...
1247
+ [2024-12-02 14:43:15,270][00408] Avg episode rewards: #0: 30.695, true rewards: #0: 12.445
1248
+ [2024-12-02 14:43:15,271][00408] Avg episode reward: 30.695, avg true_objective: 12.445
1249
+ [2024-12-02 14:43:15,331][00408] Num frames 10000...
1250
+ [2024-12-02 14:43:15,451][00408] Num frames 10100...
1251
+ [2024-12-02 14:43:15,576][00408] Num frames 10200...
1252
+ [2024-12-02 14:43:15,655][00408] Avg episode rewards: #0: 27.902, true rewards: #0: 11.347
1253
+ [2024-12-02 14:43:15,656][00408] Avg episode reward: 27.902, avg true_objective: 11.347
1254
+ [2024-12-02 14:43:15,762][00408] Num frames 10300...
1255
+ [2024-12-02 14:43:15,881][00408] Num frames 10400...
1256
+ [2024-12-02 14:43:16,009][00408] Num frames 10500...
1257
+ [2024-12-02 14:43:16,128][00408] Num frames 10600...
1258
+ [2024-12-02 14:43:16,248][00408] Num frames 10700...
1259
+ [2024-12-02 14:43:16,373][00408] Num frames 10800...
1260
+ [2024-12-02 14:43:16,455][00408] Avg episode rewards: #0: 26.020, true rewards: #0: 10.820
1261
+ [2024-12-02 14:43:16,457][00408] Avg episode reward: 26.020, avg true_objective: 10.820
1262
+ [2024-12-02 14:44:23,342][00408] Replay video saved to /content/train_dir/default_experiment/replay.mp4!