File size: 2,205 Bytes
332769b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79fa2eb
 
332769b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79fa2eb
 
332769b
 
 
 
79fa2eb
332769b
 
 
 
 
79fa2eb
 
 
 
 
 
 
 
 
 
 
 
 
332769b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finetuned-Accident-MultipleLabels-Video-subset
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned-Accident-MultipleLabels-Video-subset

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0208
- Accuracy: 0.2593

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9193        | 0.08  | 16   | 1.9108          | 0.2344   |
| 1.4025        | 1.08  | 32   | 2.0975          | 0.1094   |
| 1.5413        | 2.08  | 48   | 2.0303          | 0.2969   |
| 1.4147        | 3.08  | 64   | 2.3447          | 0.2969   |
| 1.3804        | 4.08  | 80   | 2.4733          | 0.0469   |
| 1.3687        | 5.08  | 96   | 2.4051          | 0.3438   |
| 1.2929        | 6.08  | 112  | 2.3691          | 0.3125   |
| 1.1661        | 7.08  | 128  | 2.6412          | 0.1875   |
| 1.2024        | 8.08  | 144  | 2.6427          | 0.3125   |
| 1.0824        | 9.08  | 160  | 2.7478          | 0.3594   |
| 1.1011        | 10.08 | 176  | 2.7789          | 0.3594   |
| 0.9492        | 11.08 | 192  | 2.7706          | 0.3281   |
| 1.1232        | 12.04 | 200  | 2.7944          | 0.2969   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1