---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: On December 15, 2022, the European Union Member States formally
adopted the EU’s Pillar Two Directive, which generally provides for a minimum
effective tax rate of 15%.
sentences:
- What were the key business segments of The Goldman Sachs Group, Inc. as reported
in their 2023 financial disclosures?
- What are the aspects of the EU Pillar Two Directive adopted in December 2022?
- How does customer size and geography affect the determination of SSP for products
and services?
- source_sentence: Schwab's management of credit risk involves policies and procedures
that include setting and reviewing credit limits, monitoring of credit limits
and quality of counterparties, and adjusting margin, PAL, option, and futures
requirements for certain securities and instruments.
sentences:
- What measures does Schwab take to manage credit risk?
- How might a 10% change in the obsolescence reserve percentage impact net earnings?
- How did the discount rates for Depop and Elo7 change during their 2022 impairments
analysis?
- source_sentence: While we believe that our ESG goals align with our long-term growth
strategy and financial and operational priorities, they are aspirational and may
change, and there is no guarantee or promise that they will be met.
sentences:
- What is the relationship between the ESG goals and the long-term growth strategy?
- What was the total revenue in millions for 2023 according to the disaggregated
revenue information by segment?
- How much did the net cumulative medical payments amount to in 2023?
- source_sentence: The total unrealized losses on U.S. Treasury securities amounted
to $134 million.
sentences:
- What critical audit matters were identified related to the revenue recognition
in the Connectivity & Platforms businesses at Comcast in 2023?
- What were the total unrealized losses on U.S. Treasury securities as of the last
reporting date?
- How is Revenue per Available Room (RevPAR) calculated and what does it indicate?
- source_sentence: The Chief Executive etc. does not manage segment results or allocate
resources to segments when considering these costs and they are therefore excluded
from our definition of segment income.
sentences:
- How are tax returns affecting the company's tax provisions when audited?
- What was the increase in sales and marketing expenses for the year ended December
31, 2023 compared to 2022?
- What components are excluded from segment income definition according to company
management?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7142857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8585714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7142857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1717142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7142857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8585714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8098414318705203
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7796729024943311
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7831593716959953
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7157142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8242857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8942857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7157142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27476190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08942857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7157142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8242857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8942857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.805674034217217
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7771672335600905
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7814319590791096
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7057142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8185714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8528571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8928571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7057142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17057142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08928571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7057142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8185714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8528571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8928571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7998364446362882
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7700413832199544
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7739467761950781
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8057142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8385714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8871428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26857142857142857
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1677142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0887142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8057142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8385714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8871428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7864888199817319
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7544109977324263
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7584408188949701
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pavanmantha/bge-base-en-sec10k-embed")
# Run inference
sentences = [
'The Chief Executive etc. does not manage segment results or allocate resources to segments when considering these costs and they are therefore excluded from our definition of segment income.',
'What components are excluded from segment income definition according to company management?',
'What was the increase in sales and marketing expenses for the year ended December 31, 2023 compared to 2022?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7143 |
| cosine_accuracy@3 | 0.83 |
| cosine_accuracy@5 | 0.8586 |
| cosine_accuracy@10 | 0.9043 |
| cosine_precision@1 | 0.7143 |
| cosine_precision@3 | 0.2767 |
| cosine_precision@5 | 0.1717 |
| cosine_precision@10 | 0.0904 |
| cosine_recall@1 | 0.7143 |
| cosine_recall@3 | 0.83 |
| cosine_recall@5 | 0.8586 |
| cosine_recall@10 | 0.9043 |
| cosine_ndcg@10 | 0.8098 |
| cosine_mrr@10 | 0.7797 |
| **cosine_map@100** | **0.7832** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7157 |
| cosine_accuracy@3 | 0.8243 |
| cosine_accuracy@5 | 0.8543 |
| cosine_accuracy@10 | 0.8943 |
| cosine_precision@1 | 0.7157 |
| cosine_precision@3 | 0.2748 |
| cosine_precision@5 | 0.1709 |
| cosine_precision@10 | 0.0894 |
| cosine_recall@1 | 0.7157 |
| cosine_recall@3 | 0.8243 |
| cosine_recall@5 | 0.8543 |
| cosine_recall@10 | 0.8943 |
| cosine_ndcg@10 | 0.8057 |
| cosine_mrr@10 | 0.7772 |
| **cosine_map@100** | **0.7814** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7057 |
| cosine_accuracy@3 | 0.8186 |
| cosine_accuracy@5 | 0.8529 |
| cosine_accuracy@10 | 0.8929 |
| cosine_precision@1 | 0.7057 |
| cosine_precision@3 | 0.2729 |
| cosine_precision@5 | 0.1706 |
| cosine_precision@10 | 0.0893 |
| cosine_recall@1 | 0.7057 |
| cosine_recall@3 | 0.8186 |
| cosine_recall@5 | 0.8529 |
| cosine_recall@10 | 0.8929 |
| cosine_ndcg@10 | 0.7998 |
| cosine_mrr@10 | 0.77 |
| **cosine_map@100** | **0.7739** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6871 |
| cosine_accuracy@3 | 0.8057 |
| cosine_accuracy@5 | 0.8386 |
| cosine_accuracy@10 | 0.8871 |
| cosine_precision@1 | 0.6871 |
| cosine_precision@3 | 0.2686 |
| cosine_precision@5 | 0.1677 |
| cosine_precision@10 | 0.0887 |
| cosine_recall@1 | 0.6871 |
| cosine_recall@3 | 0.8057 |
| cosine_recall@5 | 0.8386 |
| cosine_recall@10 | 0.8871 |
| cosine_ndcg@10 | 0.7865 |
| cosine_mrr@10 | 0.7544 |
| **cosine_map@100** | **0.7584** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
The federal banking regulators’ guidance on sound incentive compensation practices sets forth three key principles for incentive compensation arrangements that are designed to help ensure such plans do not encourage imprudent risk-taking and align with the safety and soundness of the organization. These principles include balancing risk with financial results, compatibility with internal controls and risk management, and support from strong corporate governance with effective oversight by the board.
| What are the three principles set forth by federal banking regulators' guidance on incentive compensation practices?
|
| Delta Air Lines generated a free cash flow of $2,003 million in 2023. This figure was adjusted for several factors including net redemptions of short-term investments and a pilot agreement payment of $735 million.
| How much free cash flow did Delta Air Lines generate in 2023?
|
| Inherent in the qualitative assessment are estimates and assumptions about our consideration of events and circumstances that may indicate a potential impairment, including industry and market conditions, expected cost pressures, expected financial performance, and general macroeconomic conditions.
| What does the qualitative assessment of goodwill consider regarding possible impairment?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters