File size: 39,389 Bytes
18bb063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4247
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: The Opa1 protein localizes to the mitochondria.Opa1 is found normally
    in the mitochondrial intermembrane space.
  sentences:
  - Which is the cellular localization of the protein Opa1?
  - Which are the genes responsible for Dyskeratosis Congenita?
  - List blood marker for Non-Hodgkin lymphoma.
- source_sentence: CorrSite identifies potential allosteric ligand-binding sites based
    on motion correlation analyses between cavities.We find that CARDS captures allosteric
    communication between the two cAMP-Binding Domains (CBDs)Overall, it is demonstrated
    that the communication pathways could be multiple and intrinsically disposed,
    and the MC path generation approach provides an effective tool for the prediction
    of key residues that mediate the allosteric communication in an ensemble of pathways
    and functionally plausible residuesWe utilized a data set of 24 known allosteric
    sites from 23 monomer proteins to calculate the correlations between potential
    ligand-binding sites and corresponding orthosteric sites using a Gaussian network
    model (GNM)Here, we introduce the Correlation of All Rotameric and Dynamical States
    (CARDS) framework for quantifying correlations between both the structure and
    disorder of different regions of a proteinWe present a novel method, "MutInf",
    to identify statistically significant correlated motions from equilibrium molecular
    dynamics simulationsCorrSite identifies potential allosteric ligand-binding sites
    based on motion correlation analyses between cavities.Here, a Monte Carlo (MC)
    path generation approach is proposed and implemented to define likely allosteric
    pathways through generating an ensemble of maximum probability paths.Here, a Monte
    Carlo (MC) path generation approach is proposed and implemented to define likely
    allosteric pathways through generating an ensemble of maximum probability paths.
    Overall, it is demonstrated that the communication pathways could be multiple
    and intrinsically disposed, and the MC path generation approach provides an effective
    tool for the prediction of key residues that mediate the allosteric communication
    in an ensemble of pathways and functionally plausible residues We utilized a data
    set of 24 known allosteric sites from 23 monomer proteins to calculate the correlations
    between potential ligand-binding sites and corresponding orthosteric sites using
    a Gaussian network model (GNM)A Monte Carlo (MC) path generation approach is proposed
    and implemented to define likely allosteric pathways through generating an ensemble
    of maximum probability paths. A novel method, "MutInf", to identify statistically
    significant correlated motions from equilibrium molecular dynamics simulations.
    CorrSite identifies potential alloster-binding sites based on motion correlation
    analyses between cavities. The Correlation of All Rotameric and Dynamical States
    (CARDS) framework for quantifying correlations between both the structure and
    disorder of different regions of a proteinComputational tools for predicting allosteric
    pathways in proteins include MCPath, MutInf, pySCA, CorrSite, and CARDS.
  sentences:
  - Computational tools for predicting allosteric pathways in proteins
  - What is PANTHER-PSEP?
  - What illness is transmitted by the Lone Star Tick, Amblyomma americanum?
- source_sentence: "Dopaminergic drugs should be given in patients with BMS. \nCatuama\
    \ reduces the symptoms of BMS and may be a novel therapeutic strategy for the\
    \ treatment of this disease.\nCapsaicin, alpha-lipoic acid (ALA), and clonazepam\
    \ were those that showed more reduction in symptoms of BMS.\nTreatment with placebos\
    \ produced a response that was 72% as large as the response to active drugs"
  sentences:
  - What is the cyberknife used for?
  - Which compounds exist that are thyroid hormone analogs?
  - Which are the drugs utilized for the burning mouth syndrome?
- source_sentence: Tinea is a superficial fungal infections of the skin.
  sentences:
  - Which molecule is targeted by a monoclonal antibody Mepolizumab?
  - What disease is tinea ?
  - Which algorithm is used for detection of long repeat expansions?
- source_sentence: Basset is an open source package which applies CNNs to learn the
    functional activity of DNA sequences from genomics data. Basset was trained on
    a compendium of accessible genomic sites mapped in 164 cell types by DNase-seq,
    and demonstrated greater predictive accuracy than previous methods. Basset predictions
    for the change in accessibility between variant alleles were far greater for Genome-wide
    association study (GWAS) SNPs that are likely to be causal relative to nearby
    SNPs in linkage disequilibrium with them. With Basset, a researcher can perform
    a single sequencing assay in their cell type of interest and simultaneously learn
    that cell's chromatin accessibility code and annotate every mutation in the genome
    with its influence on present accessibility and latent potential for accessibility.
    Thus, Basset offers a powerful computational approach to annotate and interpret
    the noncoding genome.
  sentences:
  - Givosiran is used for treatment of which disease?
  - Describe the applicability of Basset in the context of deep learning
  - What is the causative agent of the "Panama disease" affecting bananas?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base BioASQ Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.8432203389830508
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9427966101694916
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.961864406779661
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9788135593220338
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8432203389830508
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3142655367231638
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19237288135593222
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0978813559322034
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8432203389830508
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9427966101694916
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.961864406779661
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9788135593220338
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9167805960832026
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8963327280064567
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8971987609787653
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.8538135593220338
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9427966101694916
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.961864406779661
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9745762711864406
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8538135593220338
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3142655367231638
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19237288135593222
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09745762711864407
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8538135593220338
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9427966101694916
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.961864406779661
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9745762711864406
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9198462326957965
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9016772598870054
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9026755533837086
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.8453389830508474
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9385593220338984
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9555084745762712
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9745762711864406
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8453389830508474
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3128531073446327
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19110169491525425
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09745762711864407
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8453389830508474
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9385593220338984
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9555084745762712
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9745762711864406
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.914207272128957
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8944528517621736
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8952712251263324
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.8220338983050848
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9279661016949152
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9449152542372882
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9703389830508474
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8220338983050848
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3093220338983051
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18898305084745767
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09703389830508474
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8220338983050848
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9279661016949152
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9449152542372882
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9703389830508474
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.901534580728345
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8789800242130752
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8801051507894794
      name: Cosine Map@100
---

# BGE base BioASQ Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pavanmantha/bge-base-en-bioembed768")
# Run inference
sentences = [
    "Basset is an open source package which applies CNNs to learn the functional activity of DNA sequences from genomics data. Basset was trained on a compendium of accessible genomic sites mapped in 164 cell types by DNase-seq, and demonstrated greater predictive accuracy than previous methods. Basset predictions for the change in accessibility between variant alleles were far greater for Genome-wide association study (GWAS) SNPs that are likely to be causal relative to nearby SNPs in linkage disequilibrium with them. With Basset, a researcher can perform a single sequencing assay in their cell type of interest and simultaneously learn that cell's chromatin accessibility code and annotate every mutation in the genome with its influence on present accessibility and latent potential for accessibility. Thus, Basset offers a powerful computational approach to annotate and interpret the noncoding genome.",
    'Describe the applicability of Basset in the context of deep learning',
    'What is the causative agent of the "Panama disease" affecting bananas?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8432     |
| cosine_accuracy@3   | 0.9428     |
| cosine_accuracy@5   | 0.9619     |
| cosine_accuracy@10  | 0.9788     |
| cosine_precision@1  | 0.8432     |
| cosine_precision@3  | 0.3143     |
| cosine_precision@5  | 0.1924     |
| cosine_precision@10 | 0.0979     |
| cosine_recall@1     | 0.8432     |
| cosine_recall@3     | 0.9428     |
| cosine_recall@5     | 0.9619     |
| cosine_recall@10    | 0.9788     |
| cosine_ndcg@10      | 0.9168     |
| cosine_mrr@10       | 0.8963     |
| **cosine_map@100**  | **0.8972** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8538     |
| cosine_accuracy@3   | 0.9428     |
| cosine_accuracy@5   | 0.9619     |
| cosine_accuracy@10  | 0.9746     |
| cosine_precision@1  | 0.8538     |
| cosine_precision@3  | 0.3143     |
| cosine_precision@5  | 0.1924     |
| cosine_precision@10 | 0.0975     |
| cosine_recall@1     | 0.8538     |
| cosine_recall@3     | 0.9428     |
| cosine_recall@5     | 0.9619     |
| cosine_recall@10    | 0.9746     |
| cosine_ndcg@10      | 0.9198     |
| cosine_mrr@10       | 0.9017     |
| **cosine_map@100**  | **0.9027** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8453     |
| cosine_accuracy@3   | 0.9386     |
| cosine_accuracy@5   | 0.9555     |
| cosine_accuracy@10  | 0.9746     |
| cosine_precision@1  | 0.8453     |
| cosine_precision@3  | 0.3129     |
| cosine_precision@5  | 0.1911     |
| cosine_precision@10 | 0.0975     |
| cosine_recall@1     | 0.8453     |
| cosine_recall@3     | 0.9386     |
| cosine_recall@5     | 0.9555     |
| cosine_recall@10    | 0.9746     |
| cosine_ndcg@10      | 0.9142     |
| cosine_mrr@10       | 0.8945     |
| **cosine_map@100**  | **0.8953** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.822      |
| cosine_accuracy@3   | 0.928      |
| cosine_accuracy@5   | 0.9449     |
| cosine_accuracy@10  | 0.9703     |
| cosine_precision@1  | 0.822      |
| cosine_precision@3  | 0.3093     |
| cosine_precision@5  | 0.189      |
| cosine_precision@10 | 0.097      |
| cosine_recall@1     | 0.822      |
| cosine_recall@3     | 0.928      |
| cosine_recall@5     | 0.9449     |
| cosine_recall@10    | 0.9703     |
| cosine_ndcg@10      | 0.9015     |
| cosine_mrr@10       | 0.879      |
| **cosine_map@100**  | **0.8801** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 4,247 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                            |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 102.44 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.78 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | anchor                                                 |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|
  | <code>Restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED), is a common movement disorder characterized by an uncontrollable urge to move because of uncomfortable, sometimes painful sensations in the legs with a diurnal variation and a release with movement.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <code>Willis-Ekbom disease is also known as?</code>    |
  | <code>Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up['Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up.']Laser in situ keratomileusis  is also known as LASIKLaser in situ keratomileusis (LASIK)</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>What is another name for  keratomileusis?</code> |
  | <code>CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services.</code> | <code>What is CellMaps?</code>                         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|
| 0.9624     | 8      | -             | 0.8560                 | 0.8821                 | 0.8904                 | 0.8876                 |
| 1.2030     | 10     | 1.2833        | -                      | -                      | -                      | -                      |
| 1.9248     | 16     | -             | 0.8655                 | 0.8808                 | 0.8909                 | 0.8889                 |
| 2.4060     | 20     | 0.4785        | -                      | -                      | -                      | -                      |
| 2.8872     | 24     | -             | 0.8720                 | 0.8875                 | 0.8893                 | 0.8921                 |
| 3.6090     | 30     | 0.2417        | -                      | -                      | -                      | -                      |
| 3.9699     | 33     | -             | 0.8751                 | 0.8924                 | 0.8955                 | 0.8960                 |
| 4.8120     | 40     | 0.1607        | -                      | -                      | -                      | -                      |
| 4.9323     | 41     | -             | 0.8799                 | 0.8932                 | 0.8964                 | 0.8952                 |
| 5.8947     | 49     | -             | 0.8785                 | 0.8944                 | 0.9009                 | 0.8982                 |
| 6.0150     | 50     | 0.1152        | -                      | -                      | -                      | -                      |
| **6.9774** | **58** | **-**         | **0.8803**             | **0.8947**             | **0.9018**             | **0.8975**             |
| 7.2180     | 60     | 0.0924        | -                      | -                      | -                      | -                      |
| 7.9398     | 66     | -             | 0.8802                 | 0.8956                 | 0.9016                 | 0.8973                 |
| 8.4211     | 70     | 0.0832        | -                      | -                      | -                      | -                      |
| 8.9023     | 74     | -             | 0.8801                 | 0.8956                 | 0.9027                 | 0.8972                 |
| 9.6241     | 80     | 0.074         | 0.8801                 | 0.8953                 | 0.9027                 | 0.8972                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->