File size: 71,078 Bytes
18bb063
 
 
 
 
 
 
 
 
 
 
 
 
de32358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18bb063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4247
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
model-index:
  - name: pavanmantha/bge-base-en-bioembed768
    results:
      - dataset:
          config: default
          name: MTEB MedicalQARetrieval (default)
          revision: ae763399273d8b20506b80cf6f6f9a31a6a2b238
          split: test
          type: mteb/medical_qa
        metrics:
          - type: main_score
            value: 68.65599999999999
          - type: map_at_1
            value: 51.025
          - type: map_at_10
            value: 62.946000000000005
          - type: map_at_100
            value: 63.392
          - type: map_at_1000
            value: 63.408
          - type: map_at_20
            value: 63.254
          - type: map_at_3
            value: 60.221000000000004
          - type: map_at_5
            value: 62.022999999999996
          - type: mrr_at_1
            value: 51.025390625
          - type: mrr_at_10
            value: 62.94629293774791
          - type: mrr_at_100
            value: 63.391942840845125
          - type: mrr_at_1000
            value: 63.40789553144974
          - type: mrr_at_20
            value: 63.25463963215003
          - type: mrr_at_3
            value: 60.22135416666657
          - type: mrr_at_5
            value: 62.02311197916664
          - type: nauc_map_at_1000_diff1
            value: 44.0289077012448
          - type: nauc_map_at_1000_max
            value: 40.196044082980045
          - type: nauc_map_at_1000_std
            value: -13.087939597961418
          - type: nauc_map_at_100_diff1
            value: 44.02100215716583
          - type: nauc_map_at_100_max
            value: 40.20884959562626
          - type: nauc_map_at_100_std
            value: -13.074614347446076
          - type: nauc_map_at_10_diff1
            value: 43.78028009647677
          - type: nauc_map_at_10_max
            value: 40.01480272155306
          - type: nauc_map_at_10_std
            value: -13.377550749542138
          - type: nauc_map_at_1_diff1
            value: 49.57988513879831
          - type: nauc_map_at_1_max
            value: 40.609452025451915
          - type: nauc_map_at_1_std
            value: -11.541103718714977
          - type: nauc_map_at_20_diff1
            value: 43.87022043596322
          - type: nauc_map_at_20_max
            value: 40.22321319847734
          - type: nauc_map_at_20_std
            value: -13.164262713651956
          - type: nauc_map_at_3_diff1
            value: 44.38171551545852
          - type: nauc_map_at_3_max
            value: 39.6459216129053
          - type: nauc_map_at_3_std
            value: -13.770104903701466
          - type: nauc_map_at_5_diff1
            value: 43.8534318488618
          - type: nauc_map_at_5_max
            value: 39.68004513144695
          - type: nauc_map_at_5_std
            value: -13.877556205848146
          - type: nauc_mrr_at_1000_diff1
            value: 44.028920021140976
          - type: nauc_mrr_at_1000_max
            value: 40.23569448794487
          - type: nauc_mrr_at_1000_std
            value: -12.956236343591568
          - type: nauc_mrr_at_100_diff1
            value: 44.02100738083268
          - type: nauc_mrr_at_100_max
            value: 40.24846931727988
          - type: nauc_mrr_at_100_std
            value: -12.942990526259535
          - type: nauc_mrr_at_10_diff1
            value: 43.78028009647677
          - type: nauc_mrr_at_10_max
            value: 40.05165903518751
          - type: nauc_mrr_at_10_std
            value: -13.249179890670767
          - type: nauc_mrr_at_1_diff1
            value: 49.57988513879831
          - type: nauc_mrr_at_1_max
            value: 40.64858186876722
          - type: nauc_mrr_at_1_std
            value: -11.320856258088295
          - type: nauc_mrr_at_20_diff1
            value: 43.87022486033709
          - type: nauc_mrr_at_20_max
            value: 40.26263859989682
          - type: nauc_mrr_at_20_std
            value: -13.033285163966218
          - type: nauc_mrr_at_3_diff1
            value: 44.38171551545852
          - type: nauc_mrr_at_3_max
            value: 39.69840946271301
          - type: nauc_mrr_at_3_std
            value: -13.633807447557226
          - type: nauc_mrr_at_5_diff1
            value: 43.8534318488618
          - type: nauc_mrr_at_5_max
            value: 39.72797855901197
          - type: nauc_mrr_at_5_std
            value: -13.747197261890934
          - type: nauc_ndcg_at_1000_diff1
            value: 42.6428514635724
          - type: nauc_ndcg_at_1000_max
            value: 40.48576100703463
          - type: nauc_ndcg_at_1000_std
            value: -12.705673993292077
          - type: nauc_ndcg_at_100_diff1
            value: 42.17588553015554
          - type: nauc_ndcg_at_100_max
            value: 40.80768178826183
          - type: nauc_ndcg_at_100_std
            value: -12.05166428600645
          - type: nauc_ndcg_at_10_diff1
            value: 40.65597689427392
          - type: nauc_ndcg_at_10_max
            value: 40.175863350340215
          - type: nauc_ndcg_at_10_std
            value: -13.557398725708799
          - type: nauc_ndcg_at_1_diff1
            value: 49.57988513879831
          - type: nauc_ndcg_at_1_max
            value: 40.609452025451915
          - type: nauc_ndcg_at_1_std
            value: -11.541103718714977
          - type: nauc_ndcg_at_20_diff1
            value: 40.913600886170634
          - type: nauc_ndcg_at_20_max
            value: 41.00724137368964
          - type: nauc_ndcg_at_20_std
            value: -12.593947509615822
          - type: nauc_ndcg_at_3_diff1
            value: 42.40019474173081
          - type: nauc_ndcg_at_3_max
            value: 39.2565483832548
          - type: nauc_ndcg_at_3_std
            value: -14.612074432976202
          - type: nauc_ndcg_at_5_diff1
            value: 41.15688939938367
          - type: nauc_ndcg_at_5_max
            value: 39.35405468594706
          - type: nauc_ndcg_at_5_std
            value: -14.899193680376587
          - type: nauc_precision_at_1000_diff1
            value: 29.214715925497835
          - type: nauc_precision_at_1000_max
            value: 66.23687386181616
          - type: nauc_precision_at_1000_std
            value: 20.38998945371634
          - type: nauc_precision_at_100_diff1
            value: 16.184818683990663
          - type: nauc_precision_at_100_max
            value: 57.004633019507764
          - type: nauc_precision_at_100_std
            value: 24.749447988511026
          - type: nauc_precision_at_10_diff1
            value: 20.14231168000379
          - type: nauc_precision_at_10_max
            value: 41.81505494607868
          - type: nauc_precision_at_10_std
            value: -13.588327036007039
          - type: nauc_precision_at_1_diff1
            value: 49.57988513879831
          - type: nauc_precision_at_1_max
            value: 40.609452025451915
          - type: nauc_precision_at_1_std
            value: -11.541103718714977
          - type: nauc_precision_at_20_diff1
            value: 13.936251711556528
          - type: nauc_precision_at_20_max
            value: 50.63499099834573
          - type: nauc_precision_at_20_std
            value: -3.4568556682579055
          - type: nauc_precision_at_3_diff1
            value: 35.342792247725725
          - type: nauc_precision_at_3_max
            value: 37.86162276112827
          - type: nauc_precision_at_3_std
            value: -17.607999329247022
          - type: nauc_precision_at_5_diff1
            value: 28.95330037767198
          - type: nauc_precision_at_5_max
            value: 37.98848038772262
          - type: nauc_precision_at_5_std
            value: -19.46990621093604
          - type: nauc_recall_at_1000_diff1
            value: 29.214715925499096
          - type: nauc_recall_at_1000_max
            value: 66.23687386181345
          - type: nauc_recall_at_1000_std
            value: 20.389989453717625
          - type: nauc_recall_at_100_diff1
            value: 16.184818683991136
          - type: nauc_recall_at_100_max
            value: 57.004633019507104
          - type: nauc_recall_at_100_std
            value: 24.74944798851128
          - type: nauc_recall_at_10_diff1
            value: 20.14231168000389
          - type: nauc_recall_at_10_max
            value: 41.81505494607885
          - type: nauc_recall_at_10_std
            value: -13.588327036006865
          - type: nauc_recall_at_1_diff1
            value: 49.57988513879831
          - type: nauc_recall_at_1_max
            value: 40.609452025451915
          - type: nauc_recall_at_1_std
            value: -11.541103718714977
          - type: nauc_recall_at_20_diff1
            value: 13.936251711556865
          - type: nauc_recall_at_20_max
            value: 50.63499099834594
          - type: nauc_recall_at_20_std
            value: -3.4568556682576865
          - type: nauc_recall_at_3_diff1
            value: 35.34279224772573
          - type: nauc_recall_at_3_max
            value: 37.86162276112829
          - type: nauc_recall_at_3_std
            value: -17.607999329247097
          - type: nauc_recall_at_5_diff1
            value: 28.953300377672097
          - type: nauc_recall_at_5_max
            value: 37.98848038772265
          - type: nauc_recall_at_5_std
            value: -19.469906210936013
          - type: ndcg_at_1
            value: 51.025
          - type: ndcg_at_10
            value: 68.65599999999999
          - type: ndcg_at_100
            value: 70.78
          - type: ndcg_at_1000
            value: 71.207
          - type: ndcg_at_20
            value: 69.771
          - type: ndcg_at_3
            value: 63.202999999999996
          - type: ndcg_at_5
            value: 66.425
          - type: precision_at_1
            value: 51.025
          - type: precision_at_10
            value: 8.647
          - type: precision_at_100
            value: 0.963
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_20
            value: 4.543
          - type: precision_at_3
            value: 23.942
          - type: precision_at_5
            value: 15.918
          - type: recall_at_1
            value: 51.025
          - type: recall_at_10
            value: 86.47500000000001
          - type: recall_at_100
            value: 96.33800000000001
          - type: recall_at_1000
            value: 99.70700000000001
          - type: recall_at_20
            value: 90.869
          - type: recall_at_3
            value: 71.82600000000001
          - type: recall_at_5
            value: 79.59
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB TRECCOVID (default)
          revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
          split: test
          type: mteb/trec-covid
        metrics:
          - type: main_score
            value: 67.33
          - type: map_at_1
            value: 0.209
          - type: map_at_10
            value: 1.694
          - type: map_at_100
            value: 9.078999999999999
          - type: map_at_1000
            value: 21.590999999999998
          - type: map_at_20
            value: 2.973
          - type: map_at_3
            value: 0.594
          - type: map_at_5
            value: 0.9259999999999999
          - type: mrr_at_1
            value: 76.0
          - type: mrr_at_10
            value: 86.66666666666666
          - type: mrr_at_100
            value: 86.66666666666666
          - type: mrr_at_1000
            value: 86.66666666666666
          - type: mrr_at_20
            value: 86.66666666666666
          - type: mrr_at_3
            value: 86.33333333333334
          - type: mrr_at_5
            value: 86.33333333333334
          - type: nauc_map_at_1000_diff1
            value: -39.36100175513192
          - type: nauc_map_at_1000_max
            value: 51.929525559618305
          - type: nauc_map_at_1000_std
            value: 88.1016909960378
          - type: nauc_map_at_100_diff1
            value: -34.61735014934496
          - type: nauc_map_at_100_max
            value: 56.47580379027271
          - type: nauc_map_at_100_std
            value: 67.38435515182985
          - type: nauc_map_at_10_diff1
            value: -12.481472547184628
          - type: nauc_map_at_10_max
            value: 33.265754813595265
          - type: nauc_map_at_10_std
            value: 18.22638592961484
          - type: nauc_map_at_1_diff1
            value: 1.2293816647460412
          - type: nauc_map_at_1_max
            value: 23.006245222860937
          - type: nauc_map_at_1_std
            value: 5.082037971661686
          - type: nauc_map_at_20_diff1
            value: -19.628676448681272
          - type: nauc_map_at_20_max
            value: 38.05654465725153
          - type: nauc_map_at_20_std
            value: 26.77958279973914
          - type: nauc_map_at_3_diff1
            value: 1.894562755188629
          - type: nauc_map_at_3_max
            value: 30.450207405528506
          - type: nauc_map_at_3_std
            value: 8.162817124670042
          - type: nauc_map_at_5_diff1
            value: 1.8118041815327512
          - type: nauc_map_at_5_max
            value: 36.07240804057612
          - type: nauc_map_at_5_std
            value: 10.818513452904504
          - type: nauc_mrr_at_1000_diff1
            value: -0.40174560390189173
          - type: nauc_mrr_at_1000_max
            value: 43.71069182389944
          - type: nauc_mrr_at_1000_std
            value: 37.65627005519199
          - type: nauc_mrr_at_100_diff1
            value: -0.40174560390189173
          - type: nauc_mrr_at_100_max
            value: 43.71069182389944
          - type: nauc_mrr_at_100_std
            value: 37.65627005519199
          - type: nauc_mrr_at_10_diff1
            value: -0.40174560390189173
          - type: nauc_mrr_at_10_max
            value: 43.71069182389944
          - type: nauc_mrr_at_10_std
            value: 37.65627005519199
          - type: nauc_mrr_at_1_diff1
            value: -7.977848922730832
          - type: nauc_mrr_at_1_max
            value: 37.61356753482742
          - type: nauc_mrr_at_1_std
            value: 34.039975772259226
          - type: nauc_mrr_at_20_diff1
            value: -0.40174560390189173
          - type: nauc_mrr_at_20_max
            value: 43.71069182389944
          - type: nauc_mrr_at_20_std
            value: 37.65627005519199
          - type: nauc_mrr_at_3_diff1
            value: 1.934992255034202
          - type: nauc_mrr_at_3_max
            value: 45.21685904162296
          - type: nauc_mrr_at_3_std
            value: 39.32443911457557
          - type: nauc_mrr_at_5_diff1
            value: 1.934992255034202
          - type: nauc_mrr_at_5_max
            value: 45.21685904162296
          - type: nauc_mrr_at_5_std
            value: 39.32443911457557
          - type: nauc_ndcg_at_1000_diff1
            value: -40.908094812392115
          - type: nauc_ndcg_at_1000_max
            value: 48.81499531922747
          - type: nauc_ndcg_at_1000_std
            value: 82.86337304804559
          - type: nauc_ndcg_at_100_diff1
            value: -44.56244464473406
          - type: nauc_ndcg_at_100_max
            value: 40.58624018883107
          - type: nauc_ndcg_at_100_std
            value: 80.45918244234892
          - type: nauc_ndcg_at_10_diff1
            value: -29.518074434000603
          - type: nauc_ndcg_at_10_max
            value: 43.48658903105973
          - type: nauc_ndcg_at_10_std
            value: 56.823103247390485
          - type: nauc_ndcg_at_1_diff1
            value: -26.938752512067293
          - type: nauc_ndcg_at_1_max
            value: 28.738050072310013
          - type: nauc_ndcg_at_1_std
            value: 38.51773942114455
          - type: nauc_ndcg_at_20_diff1
            value: -42.09374526480503
          - type: nauc_ndcg_at_20_max
            value: 39.88753819987586
          - type: nauc_ndcg_at_20_std
            value: 64.9188937434715
          - type: nauc_ndcg_at_3_diff1
            value: -18.983747164354074
          - type: nauc_ndcg_at_3_max
            value: 40.07068201143408
          - type: nauc_ndcg_at_3_std
            value: 44.520014381841264
          - type: nauc_ndcg_at_5_diff1
            value: -17.363745221747216
          - type: nauc_ndcg_at_5_max
            value: 45.3133946971861
          - type: nauc_ndcg_at_5_std
            value: 46.14383772600112
          - type: nauc_precision_at_1000_diff1
            value: -33.997592992905865
          - type: nauc_precision_at_1000_max
            value: 21.194962132845994
          - type: nauc_precision_at_1000_std
            value: 66.17573850908786
          - type: nauc_precision_at_100_diff1
            value: -45.17468834913693
          - type: nauc_precision_at_100_max
            value: 38.919854917565715
          - type: nauc_precision_at_100_std
            value: 81.8096172142314
          - type: nauc_precision_at_10_diff1
            value: -29.42371504029257
          - type: nauc_precision_at_10_max
            value: 44.73436091909716
          - type: nauc_precision_at_10_std
            value: 60.6846867495612
          - type: nauc_precision_at_1_diff1
            value: -7.977848922730832
          - type: nauc_precision_at_1_max
            value: 37.61356753482742
          - type: nauc_precision_at_1_std
            value: 34.039975772259226
          - type: nauc_precision_at_20_diff1
            value: -44.20238216430825
          - type: nauc_precision_at_20_max
            value: 39.17789315325717
          - type: nauc_precision_at_20_std
            value: 66.31262230366372
          - type: nauc_precision_at_3_diff1
            value: -4.094499601420467
          - type: nauc_precision_at_3_max
            value: 47.878469454308245
          - type: nauc_precision_at_3_std
            value: 44.82390028262911
          - type: nauc_precision_at_5_diff1
            value: -6.49531959342742
          - type: nauc_precision_at_5_max
            value: 50.725161705033905
          - type: nauc_precision_at_5_std
            value: 44.29713551082716
          - type: nauc_recall_at_1000_diff1
            value: -31.512611908780038
          - type: nauc_recall_at_1000_max
            value: 46.63381390751818
          - type: nauc_recall_at_1000_std
            value: 75.17070088378604
          - type: nauc_recall_at_100_diff1
            value: -28.875944584904158
          - type: nauc_recall_at_100_max
            value: 54.171746378883675
          - type: nauc_recall_at_100_std
            value: 56.1907274521453
          - type: nauc_recall_at_10_diff1
            value: -10.85790669811538
          - type: nauc_recall_at_10_max
            value: 27.66643799038461
          - type: nauc_recall_at_10_std
            value: 11.509747430055707
          - type: nauc_recall_at_1_diff1
            value: 1.2293816647460412
          - type: nauc_recall_at_1_max
            value: 23.006245222860937
          - type: nauc_recall_at_1_std
            value: 5.082037971661686
          - type: nauc_recall_at_20_diff1
            value: -15.447672155452471
          - type: nauc_recall_at_20_max
            value: 31.74240316416819
          - type: nauc_recall_at_20_std
            value: 15.003324764456485
          - type: nauc_recall_at_3_diff1
            value: 4.254127681493859
          - type: nauc_recall_at_3_max
            value: 30.840766518682173
          - type: nauc_recall_at_3_std
            value: 5.690923550364749
          - type: nauc_recall_at_5_diff1
            value: 4.089262491662224
          - type: nauc_recall_at_5_max
            value: 33.53882138961467
          - type: nauc_recall_at_5_std
            value: 6.213191881998446
          - type: ndcg_at_1
            value: 71.0
          - type: ndcg_at_10
            value: 67.33
          - type: ndcg_at_100
            value: 50.70099999999999
          - type: ndcg_at_1000
            value: 45.678999999999995
          - type: ndcg_at_20
            value: 64.181
          - type: ndcg_at_3
            value: 71.961
          - type: ndcg_at_5
            value: 69.14200000000001
          - type: precision_at_1
            value: 76.0
          - type: precision_at_10
            value: 72.0
          - type: precision_at_100
            value: 51.72
          - type: precision_at_1000
            value: 19.888
          - type: precision_at_20
            value: 68.2
          - type: precision_at_3
            value: 78.0
          - type: precision_at_5
            value: 74.4
          - type: recall_at_1
            value: 0.209
          - type: recall_at_10
            value: 1.9369999999999998
          - type: recall_at_100
            value: 12.466000000000001
          - type: recall_at_1000
            value: 42.535000000000004
          - type: recall_at_20
            value: 3.6189999999999998
          - type: recall_at_3
            value: 0.632
          - type: recall_at_5
            value: 1.01
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB TRECCOVID-PL (default)
          revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd
          split: test
          type: clarin-knext/trec-covid-pl
        metrics:
          - type: main_score
            value: 24.014
          - type: map_at_1
            value: 0.079
          - type: map_at_10
            value: 0.437
          - type: map_at_100
            value: 1.4160000000000001
          - type: map_at_1000
            value: 3.2960000000000003
          - type: map_at_20
            value: 0.6930000000000001
          - type: map_at_3
            value: 0.209
          - type: map_at_5
            value: 0.27599999999999997
          - type: mrr_at_1
            value: 32.0
          - type: mrr_at_10
            value: 40.766666666666666
          - type: mrr_at_100
            value: 42.065712760557446
          - type: mrr_at_1000
            value: 42.070147350357885
          - type: mrr_at_20
            value: 41.34215024741341
          - type: mrr_at_3
            value: 38.0
          - type: mrr_at_5
            value: 39.9
          - type: nauc_map_at_1000_diff1
            value: 2.763744410970452
          - type: nauc_map_at_1000_max
            value: 44.08217037883956
          - type: nauc_map_at_1000_std
            value: 45.726618026799784
          - type: nauc_map_at_100_diff1
            value: -1.1063775194811718
          - type: nauc_map_at_100_max
            value: 34.96148903048783
          - type: nauc_map_at_100_std
            value: 19.05911651363395
          - type: nauc_map_at_10_diff1
            value: 8.328485941895645
          - type: nauc_map_at_10_max
            value: 29.05954535135173
          - type: nauc_map_at_10_std
            value: -0.5663434331732777
          - type: nauc_map_at_1_diff1
            value: 15.648422889306588
          - type: nauc_map_at_1_max
            value: 33.43814058583505
          - type: nauc_map_at_1_std
            value: 0.38842622009531697
          - type: nauc_map_at_20_diff1
            value: 1.6239706005789203
          - type: nauc_map_at_20_max
            value: 30.780719931285766
          - type: nauc_map_at_20_std
            value: 5.226612687670864
          - type: nauc_map_at_3_diff1
            value: 14.691780792096715
          - type: nauc_map_at_3_max
            value: 29.72244349623907
          - type: nauc_map_at_3_std
            value: -3.894547135006907
          - type: nauc_map_at_5_diff1
            value: 7.625413465278537
          - type: nauc_map_at_5_max
            value: 28.061369021765792
          - type: nauc_map_at_5_std
            value: -1.6405791401954202
          - type: nauc_mrr_at_1000_diff1
            value: 9.903128384417203
          - type: nauc_mrr_at_1000_max
            value: 36.58476712156808
          - type: nauc_mrr_at_1000_std
            value: 11.948350197817941
          - type: nauc_mrr_at_100_diff1
            value: 9.911332457182505
          - type: nauc_mrr_at_100_max
            value: 36.5931154968881
          - type: nauc_mrr_at_100_std
            value: 11.923871293185774
          - type: nauc_mrr_at_10_diff1
            value: 10.061614580122114
          - type: nauc_mrr_at_10_max
            value: 35.90157508486573
          - type: nauc_mrr_at_10_std
            value: 11.683458301136916
          - type: nauc_mrr_at_1_diff1
            value: 13.560954725462931
          - type: nauc_mrr_at_1_max
            value: 41.29294659103072
          - type: nauc_mrr_at_1_std
            value: 23.92967997431232
          - type: nauc_mrr_at_20_diff1
            value: 9.754021662833347
          - type: nauc_mrr_at_20_max
            value: 35.765859492846374
          - type: nauc_mrr_at_20_std
            value: 11.848463872530932
          - type: nauc_mrr_at_3_diff1
            value: 10.028274713949735
          - type: nauc_mrr_at_3_max
            value: 38.88433792246913
          - type: nauc_mrr_at_3_std
            value: 11.48473077363494
          - type: nauc_mrr_at_5_diff1
            value: 9.335538525973245
          - type: nauc_mrr_at_5_max
            value: 37.515438355632824
          - type: nauc_mrr_at_5_std
            value: 11.070968041209992
          - type: nauc_ndcg_at_1000_diff1
            value: 5.584802003379831
          - type: nauc_ndcg_at_1000_max
            value: 33.314515131527834
          - type: nauc_ndcg_at_1000_std
            value: 33.6276642722341
          - type: nauc_ndcg_at_100_diff1
            value: 3.305268021968464
          - type: nauc_ndcg_at_100_max
            value: 31.908715963813822
          - type: nauc_ndcg_at_100_std
            value: 21.516527921316257
          - type: nauc_ndcg_at_10_diff1
            value: 7.032873935225729
          - type: nauc_ndcg_at_10_max
            value: 34.44205777276943
          - type: nauc_ndcg_at_10_std
            value: 7.196543440601352
          - type: nauc_ndcg_at_1_diff1
            value: 10.629073273765686
          - type: nauc_ndcg_at_1_max
            value: 50.10213581979629
          - type: nauc_ndcg_at_1_std
            value: 19.5308700304323
          - type: nauc_ndcg_at_20_diff1
            value: 4.1467973799104
          - type: nauc_ndcg_at_20_max
            value: 30.848940009171866
          - type: nauc_ndcg_at_20_std
            value: 10.699007932982358
          - type: nauc_ndcg_at_3_diff1
            value: 8.388484432353273
          - type: nauc_ndcg_at_3_max
            value: 40.198931190038564
          - type: nauc_ndcg_at_3_std
            value: 9.0164907464323
          - type: nauc_ndcg_at_5_diff1
            value: 4.519480833729923
          - type: nauc_ndcg_at_5_max
            value: 35.50336397828203
          - type: nauc_ndcg_at_5_std
            value: 8.89149616108275
          - type: nauc_precision_at_1000_diff1
            value: 10.810355967699419
          - type: nauc_precision_at_1000_max
            value: 36.198978350147165
          - type: nauc_precision_at_1000_std
            value: 50.02406670342153
          - type: nauc_precision_at_100_diff1
            value: 3.575117640307563
          - type: nauc_precision_at_100_max
            value: 32.374410110652754
          - type: nauc_precision_at_100_std
            value: 27.11269840198216
          - type: nauc_precision_at_10_diff1
            value: 8.163568076583704
          - type: nauc_precision_at_10_max
            value: 30.43788895048762
          - type: nauc_precision_at_10_std
            value: 7.492835893151349
          - type: nauc_precision_at_1_diff1
            value: 13.560954725462931
          - type: nauc_precision_at_1_max
            value: 41.29294659103072
          - type: nauc_precision_at_1_std
            value: 23.92967997431232
          - type: nauc_precision_at_20_diff1
            value: 3.9343182675494726
          - type: nauc_precision_at_20_max
            value: 27.92494826281862
          - type: nauc_precision_at_20_std
            value: 13.512522169356163
          - type: nauc_precision_at_3_diff1
            value: 7.500566731389045
          - type: nauc_precision_at_3_max
            value: 32.78072916153323
          - type: nauc_precision_at_3_std
            value: 5.442592574340379
          - type: nauc_precision_at_5_diff1
            value: 0.8368868088056831
          - type: nauc_precision_at_5_max
            value: 28.50268677413763
          - type: nauc_precision_at_5_std
            value: 6.262437164153216
          - type: nauc_recall_at_1000_diff1
            value: 6.466492011253024
          - type: nauc_recall_at_1000_max
            value: 33.29659361447259
          - type: nauc_recall_at_1000_std
            value: 38.33133164748577
          - type: nauc_recall_at_100_diff1
            value: -4.710612377509895
          - type: nauc_recall_at_100_max
            value: 33.36640370485505
          - type: nauc_recall_at_100_std
            value: 15.00124272531718
          - type: nauc_recall_at_10_diff1
            value: 8.383464512319398
          - type: nauc_recall_at_10_max
            value: 27.753627188606263
          - type: nauc_recall_at_10_std
            value: -6.430500905036131
          - type: nauc_recall_at_1_diff1
            value: 15.648422889306588
          - type: nauc_recall_at_1_max
            value: 33.43814058583505
          - type: nauc_recall_at_1_std
            value: 0.38842622009531697
          - type: nauc_recall_at_20_diff1
            value: 0.6220898729888212
          - type: nauc_recall_at_20_max
            value: 26.706071721975373
          - type: nauc_recall_at_20_std
            value: -0.07228409632534197
          - type: nauc_recall_at_3_diff1
            value: 14.399942747468852
          - type: nauc_recall_at_3_max
            value: 29.839734495614795
          - type: nauc_recall_at_3_std
            value: -7.342370795101286
          - type: nauc_recall_at_5_diff1
            value: 4.307738089595829
          - type: nauc_recall_at_5_max
            value: 26.81904935896474
          - type: nauc_recall_at_5_std
            value: -7.309908018949135
          - type: ndcg_at_1
            value: 28.999999999999996
          - type: ndcg_at_10
            value: 24.014
          - type: ndcg_at_100
            value: 14.601
          - type: ndcg_at_1000
            value: 12.147
          - type: ndcg_at_20
            value: 22.093
          - type: ndcg_at_3
            value: 28.531000000000002
          - type: ndcg_at_5
            value: 26.311
          - type: precision_at_1
            value: 32.0
          - type: precision_at_10
            value: 24.8
          - type: precision_at_100
            value: 14.06
          - type: precision_at_1000
            value: 5.814
          - type: precision_at_20
            value: 23.1
          - type: precision_at_3
            value: 31.333
          - type: precision_at_5
            value: 27.6
          - type: recall_at_1
            value: 0.079
          - type: recall_at_10
            value: 0.584
          - type: recall_at_100
            value: 2.843
          - type: recall_at_1000
            value: 11.053
          - type: recall_at_20
            value: 1.031
          - type: recall_at_3
            value: 0.22699999999999998
          - type: recall_at_5
            value: 0.327
        task:
          type: Retrieval
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: The Opa1 protein localizes to the mitochondria.Opa1 is found normally
    in the mitochondrial intermembrane space.
  sentences:
  - Which is the cellular localization of the protein Opa1?
  - Which are the genes responsible for Dyskeratosis Congenita?
  - List blood marker for Non-Hodgkin lymphoma.
- source_sentence: CorrSite identifies potential allosteric ligand-binding sites based
    on motion correlation analyses between cavities.We find that CARDS captures allosteric
    communication between the two cAMP-Binding Domains (CBDs)Overall, it is demonstrated
    that the communication pathways could be multiple and intrinsically disposed,
    and the MC path generation approach provides an effective tool for the prediction
    of key residues that mediate the allosteric communication in an ensemble of pathways
    and functionally plausible residuesWe utilized a data set of 24 known allosteric
    sites from 23 monomer proteins to calculate the correlations between potential
    ligand-binding sites and corresponding orthosteric sites using a Gaussian network
    model (GNM)Here, we introduce the Correlation of All Rotameric and Dynamical States
    (CARDS) framework for quantifying correlations between both the structure and
    disorder of different regions of a proteinWe present a novel method, "MutInf",
    to identify statistically significant correlated motions from equilibrium molecular
    dynamics simulationsCorrSite identifies potential allosteric ligand-binding sites
    based on motion correlation analyses between cavities.Here, a Monte Carlo (MC)
    path generation approach is proposed and implemented to define likely allosteric
    pathways through generating an ensemble of maximum probability paths.Here, a Monte
    Carlo (MC) path generation approach is proposed and implemented to define likely
    allosteric pathways through generating an ensemble of maximum probability paths.
    Overall, it is demonstrated that the communication pathways could be multiple
    and intrinsically disposed, and the MC path generation approach provides an effective
    tool for the prediction of key residues that mediate the allosteric communication
    in an ensemble of pathways and functionally plausible residues We utilized a data
    set of 24 known allosteric sites from 23 monomer proteins to calculate the correlations
    between potential ligand-binding sites and corresponding orthosteric sites using
    a Gaussian network model (GNM)A Monte Carlo (MC) path generation approach is proposed
    and implemented to define likely allosteric pathways through generating an ensemble
    of maximum probability paths. A novel method, "MutInf", to identify statistically
    significant correlated motions from equilibrium molecular dynamics simulations.
    CorrSite identifies potential alloster-binding sites based on motion correlation
    analyses between cavities. The Correlation of All Rotameric and Dynamical States
    (CARDS) framework for quantifying correlations between both the structure and
    disorder of different regions of a proteinComputational tools for predicting allosteric
    pathways in proteins include MCPath, MutInf, pySCA, CorrSite, and CARDS.
  sentences:
  - Computational tools for predicting allosteric pathways in proteins
  - What is PANTHER-PSEP?
  - What illness is transmitted by the Lone Star Tick, Amblyomma americanum?
- source_sentence: "Dopaminergic drugs should be given in patients with BMS. \nCatuama\
    \ reduces the symptoms of BMS and may be a novel therapeutic strategy for the\
    \ treatment of this disease.\nCapsaicin, alpha-lipoic acid (ALA), and clonazepam\
    \ were those that showed more reduction in symptoms of BMS.\nTreatment with placebos\
    \ produced a response that was 72% as large as the response to active drugs"
  sentences:
  - What is the cyberknife used for?
  - Which compounds exist that are thyroid hormone analogs?
  - Which are the drugs utilized for the burning mouth syndrome?
- source_sentence: Tinea is a superficial fungal infections of the skin.
  sentences:
  - Which molecule is targeted by a monoclonal antibody Mepolizumab?
  - What disease is tinea ?
  - Which algorithm is used for detection of long repeat expansions?
- source_sentence: Basset is an open source package which applies CNNs to learn the
    functional activity of DNA sequences from genomics data. Basset was trained on
    a compendium of accessible genomic sites mapped in 164 cell types by DNase-seq,
    and demonstrated greater predictive accuracy than previous methods. Basset predictions
    for the change in accessibility between variant alleles were far greater for Genome-wide
    association study (GWAS) SNPs that are likely to be causal relative to nearby
    SNPs in linkage disequilibrium with them. With Basset, a researcher can perform
    a single sequencing assay in their cell type of interest and simultaneously learn
    that cell's chromatin accessibility code and annotate every mutation in the genome
    with its influence on present accessibility and latent potential for accessibility.
    Thus, Basset offers a powerful computational approach to annotate and interpret
    the noncoding genome.
  sentences:
  - Givosiran is used for treatment of which disease?
  - Describe the applicability of Basset in the context of deep learning
  - What is the causative agent of the "Panama disease" affecting bananas?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base BioASQ Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.8432203389830508
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9427966101694916
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.961864406779661
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9788135593220338
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8432203389830508
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3142655367231638
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19237288135593222
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0978813559322034
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8432203389830508
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9427966101694916
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.961864406779661
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9788135593220338
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9167805960832026
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8963327280064567
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8971987609787653
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.8538135593220338
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9427966101694916
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.961864406779661
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9745762711864406
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8538135593220338
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3142655367231638
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19237288135593222
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09745762711864407
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8538135593220338
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9427966101694916
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.961864406779661
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9745762711864406
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9198462326957965
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9016772598870054
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9026755533837086
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.8453389830508474
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9385593220338984
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9555084745762712
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9745762711864406
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8453389830508474
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3128531073446327
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19110169491525425
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09745762711864407
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8453389830508474
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9385593220338984
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9555084745762712
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9745762711864406
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.914207272128957
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8944528517621736
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8952712251263324
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.8220338983050848
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9279661016949152
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9449152542372882
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9703389830508474
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8220338983050848
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3093220338983051
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18898305084745767
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09703389830508474
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8220338983050848
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9279661016949152
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9449152542372882
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9703389830508474
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.901534580728345
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8789800242130752
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8801051507894794
      name: Cosine Map@100
---

# BGE base BioASQ Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pavanmantha/bge-base-en-bioembed768")
# Run inference
sentences = [
    "Basset is an open source package which applies CNNs to learn the functional activity of DNA sequences from genomics data. Basset was trained on a compendium of accessible genomic sites mapped in 164 cell types by DNase-seq, and demonstrated greater predictive accuracy than previous methods. Basset predictions for the change in accessibility between variant alleles were far greater for Genome-wide association study (GWAS) SNPs that are likely to be causal relative to nearby SNPs in linkage disequilibrium with them. With Basset, a researcher can perform a single sequencing assay in their cell type of interest and simultaneously learn that cell's chromatin accessibility code and annotate every mutation in the genome with its influence on present accessibility and latent potential for accessibility. Thus, Basset offers a powerful computational approach to annotate and interpret the noncoding genome.",
    'Describe the applicability of Basset in the context of deep learning',
    'What is the causative agent of the "Panama disease" affecting bananas?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8432     |
| cosine_accuracy@3   | 0.9428     |
| cosine_accuracy@5   | 0.9619     |
| cosine_accuracy@10  | 0.9788     |
| cosine_precision@1  | 0.8432     |
| cosine_precision@3  | 0.3143     |
| cosine_precision@5  | 0.1924     |
| cosine_precision@10 | 0.0979     |
| cosine_recall@1     | 0.8432     |
| cosine_recall@3     | 0.9428     |
| cosine_recall@5     | 0.9619     |
| cosine_recall@10    | 0.9788     |
| cosine_ndcg@10      | 0.9168     |
| cosine_mrr@10       | 0.8963     |
| **cosine_map@100**  | **0.8972** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8538     |
| cosine_accuracy@3   | 0.9428     |
| cosine_accuracy@5   | 0.9619     |
| cosine_accuracy@10  | 0.9746     |
| cosine_precision@1  | 0.8538     |
| cosine_precision@3  | 0.3143     |
| cosine_precision@5  | 0.1924     |
| cosine_precision@10 | 0.0975     |
| cosine_recall@1     | 0.8538     |
| cosine_recall@3     | 0.9428     |
| cosine_recall@5     | 0.9619     |
| cosine_recall@10    | 0.9746     |
| cosine_ndcg@10      | 0.9198     |
| cosine_mrr@10       | 0.9017     |
| **cosine_map@100**  | **0.9027** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8453     |
| cosine_accuracy@3   | 0.9386     |
| cosine_accuracy@5   | 0.9555     |
| cosine_accuracy@10  | 0.9746     |
| cosine_precision@1  | 0.8453     |
| cosine_precision@3  | 0.3129     |
| cosine_precision@5  | 0.1911     |
| cosine_precision@10 | 0.0975     |
| cosine_recall@1     | 0.8453     |
| cosine_recall@3     | 0.9386     |
| cosine_recall@5     | 0.9555     |
| cosine_recall@10    | 0.9746     |
| cosine_ndcg@10      | 0.9142     |
| cosine_mrr@10       | 0.8945     |
| **cosine_map@100**  | **0.8953** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.822      |
| cosine_accuracy@3   | 0.928      |
| cosine_accuracy@5   | 0.9449     |
| cosine_accuracy@10  | 0.9703     |
| cosine_precision@1  | 0.822      |
| cosine_precision@3  | 0.3093     |
| cosine_precision@5  | 0.189      |
| cosine_precision@10 | 0.097      |
| cosine_recall@1     | 0.822      |
| cosine_recall@3     | 0.928      |
| cosine_recall@5     | 0.9449     |
| cosine_recall@10    | 0.9703     |
| cosine_ndcg@10      | 0.9015     |
| cosine_mrr@10       | 0.879      |
| **cosine_map@100**  | **0.8801** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 4,247 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                            |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 102.44 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.78 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | anchor                                                 |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|
  | <code>Restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED), is a common movement disorder characterized by an uncontrollable urge to move because of uncomfortable, sometimes painful sensations in the legs with a diurnal variation and a release with movement.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <code>Willis-Ekbom disease is also known as?</code>    |
  | <code>Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up['Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up.']Laser in situ keratomileusis  is also known as LASIKLaser in situ keratomileusis (LASIK)</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>What is another name for  keratomileusis?</code> |
  | <code>CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services.</code> | <code>What is CellMaps?</code>                         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|
| 0.9624     | 8      | -             | 0.8560                 | 0.8821                 | 0.8904                 | 0.8876                 |
| 1.2030     | 10     | 1.2833        | -                      | -                      | -                      | -                      |
| 1.9248     | 16     | -             | 0.8655                 | 0.8808                 | 0.8909                 | 0.8889                 |
| 2.4060     | 20     | 0.4785        | -                      | -                      | -                      | -                      |
| 2.8872     | 24     | -             | 0.8720                 | 0.8875                 | 0.8893                 | 0.8921                 |
| 3.6090     | 30     | 0.2417        | -                      | -                      | -                      | -                      |
| 3.9699     | 33     | -             | 0.8751                 | 0.8924                 | 0.8955                 | 0.8960                 |
| 4.8120     | 40     | 0.1607        | -                      | -                      | -                      | -                      |
| 4.9323     | 41     | -             | 0.8799                 | 0.8932                 | 0.8964                 | 0.8952                 |
| 5.8947     | 49     | -             | 0.8785                 | 0.8944                 | 0.9009                 | 0.8982                 |
| 6.0150     | 50     | 0.1152        | -                      | -                      | -                      | -                      |
| **6.9774** | **58** | **-**         | **0.8803**             | **0.8947**             | **0.9018**             | **0.8975**             |
| 7.2180     | 60     | 0.0924        | -                      | -                      | -                      | -                      |
| 7.9398     | 66     | -             | 0.8802                 | 0.8956                 | 0.9016                 | 0.8973                 |
| 8.4211     | 70     | 0.0832        | -                      | -                      | -                      | -                      |
| 8.9023     | 74     | -             | 0.8801                 | 0.8956                 | 0.9027                 | 0.8972                 |
| 9.6241     | 80     | 0.074         | 0.8801                 | 0.8953                 | 0.9027                 | 0.8972                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->