File size: 71,078 Bytes
18bb063 de32358 18bb063 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 |
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4247
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
model-index:
- name: pavanmantha/bge-base-en-bioembed768
results:
- dataset:
config: default
name: MTEB MedicalQARetrieval (default)
revision: ae763399273d8b20506b80cf6f6f9a31a6a2b238
split: test
type: mteb/medical_qa
metrics:
- type: main_score
value: 68.65599999999999
- type: map_at_1
value: 51.025
- type: map_at_10
value: 62.946000000000005
- type: map_at_100
value: 63.392
- type: map_at_1000
value: 63.408
- type: map_at_20
value: 63.254
- type: map_at_3
value: 60.221000000000004
- type: map_at_5
value: 62.022999999999996
- type: mrr_at_1
value: 51.025390625
- type: mrr_at_10
value: 62.94629293774791
- type: mrr_at_100
value: 63.391942840845125
- type: mrr_at_1000
value: 63.40789553144974
- type: mrr_at_20
value: 63.25463963215003
- type: mrr_at_3
value: 60.22135416666657
- type: mrr_at_5
value: 62.02311197916664
- type: nauc_map_at_1000_diff1
value: 44.0289077012448
- type: nauc_map_at_1000_max
value: 40.196044082980045
- type: nauc_map_at_1000_std
value: -13.087939597961418
- type: nauc_map_at_100_diff1
value: 44.02100215716583
- type: nauc_map_at_100_max
value: 40.20884959562626
- type: nauc_map_at_100_std
value: -13.074614347446076
- type: nauc_map_at_10_diff1
value: 43.78028009647677
- type: nauc_map_at_10_max
value: 40.01480272155306
- type: nauc_map_at_10_std
value: -13.377550749542138
- type: nauc_map_at_1_diff1
value: 49.57988513879831
- type: nauc_map_at_1_max
value: 40.609452025451915
- type: nauc_map_at_1_std
value: -11.541103718714977
- type: nauc_map_at_20_diff1
value: 43.87022043596322
- type: nauc_map_at_20_max
value: 40.22321319847734
- type: nauc_map_at_20_std
value: -13.164262713651956
- type: nauc_map_at_3_diff1
value: 44.38171551545852
- type: nauc_map_at_3_max
value: 39.6459216129053
- type: nauc_map_at_3_std
value: -13.770104903701466
- type: nauc_map_at_5_diff1
value: 43.8534318488618
- type: nauc_map_at_5_max
value: 39.68004513144695
- type: nauc_map_at_5_std
value: -13.877556205848146
- type: nauc_mrr_at_1000_diff1
value: 44.028920021140976
- type: nauc_mrr_at_1000_max
value: 40.23569448794487
- type: nauc_mrr_at_1000_std
value: -12.956236343591568
- type: nauc_mrr_at_100_diff1
value: 44.02100738083268
- type: nauc_mrr_at_100_max
value: 40.24846931727988
- type: nauc_mrr_at_100_std
value: -12.942990526259535
- type: nauc_mrr_at_10_diff1
value: 43.78028009647677
- type: nauc_mrr_at_10_max
value: 40.05165903518751
- type: nauc_mrr_at_10_std
value: -13.249179890670767
- type: nauc_mrr_at_1_diff1
value: 49.57988513879831
- type: nauc_mrr_at_1_max
value: 40.64858186876722
- type: nauc_mrr_at_1_std
value: -11.320856258088295
- type: nauc_mrr_at_20_diff1
value: 43.87022486033709
- type: nauc_mrr_at_20_max
value: 40.26263859989682
- type: nauc_mrr_at_20_std
value: -13.033285163966218
- type: nauc_mrr_at_3_diff1
value: 44.38171551545852
- type: nauc_mrr_at_3_max
value: 39.69840946271301
- type: nauc_mrr_at_3_std
value: -13.633807447557226
- type: nauc_mrr_at_5_diff1
value: 43.8534318488618
- type: nauc_mrr_at_5_max
value: 39.72797855901197
- type: nauc_mrr_at_5_std
value: -13.747197261890934
- type: nauc_ndcg_at_1000_diff1
value: 42.6428514635724
- type: nauc_ndcg_at_1000_max
value: 40.48576100703463
- type: nauc_ndcg_at_1000_std
value: -12.705673993292077
- type: nauc_ndcg_at_100_diff1
value: 42.17588553015554
- type: nauc_ndcg_at_100_max
value: 40.80768178826183
- type: nauc_ndcg_at_100_std
value: -12.05166428600645
- type: nauc_ndcg_at_10_diff1
value: 40.65597689427392
- type: nauc_ndcg_at_10_max
value: 40.175863350340215
- type: nauc_ndcg_at_10_std
value: -13.557398725708799
- type: nauc_ndcg_at_1_diff1
value: 49.57988513879831
- type: nauc_ndcg_at_1_max
value: 40.609452025451915
- type: nauc_ndcg_at_1_std
value: -11.541103718714977
- type: nauc_ndcg_at_20_diff1
value: 40.913600886170634
- type: nauc_ndcg_at_20_max
value: 41.00724137368964
- type: nauc_ndcg_at_20_std
value: -12.593947509615822
- type: nauc_ndcg_at_3_diff1
value: 42.40019474173081
- type: nauc_ndcg_at_3_max
value: 39.2565483832548
- type: nauc_ndcg_at_3_std
value: -14.612074432976202
- type: nauc_ndcg_at_5_diff1
value: 41.15688939938367
- type: nauc_ndcg_at_5_max
value: 39.35405468594706
- type: nauc_ndcg_at_5_std
value: -14.899193680376587
- type: nauc_precision_at_1000_diff1
value: 29.214715925497835
- type: nauc_precision_at_1000_max
value: 66.23687386181616
- type: nauc_precision_at_1000_std
value: 20.38998945371634
- type: nauc_precision_at_100_diff1
value: 16.184818683990663
- type: nauc_precision_at_100_max
value: 57.004633019507764
- type: nauc_precision_at_100_std
value: 24.749447988511026
- type: nauc_precision_at_10_diff1
value: 20.14231168000379
- type: nauc_precision_at_10_max
value: 41.81505494607868
- type: nauc_precision_at_10_std
value: -13.588327036007039
- type: nauc_precision_at_1_diff1
value: 49.57988513879831
- type: nauc_precision_at_1_max
value: 40.609452025451915
- type: nauc_precision_at_1_std
value: -11.541103718714977
- type: nauc_precision_at_20_diff1
value: 13.936251711556528
- type: nauc_precision_at_20_max
value: 50.63499099834573
- type: nauc_precision_at_20_std
value: -3.4568556682579055
- type: nauc_precision_at_3_diff1
value: 35.342792247725725
- type: nauc_precision_at_3_max
value: 37.86162276112827
- type: nauc_precision_at_3_std
value: -17.607999329247022
- type: nauc_precision_at_5_diff1
value: 28.95330037767198
- type: nauc_precision_at_5_max
value: 37.98848038772262
- type: nauc_precision_at_5_std
value: -19.46990621093604
- type: nauc_recall_at_1000_diff1
value: 29.214715925499096
- type: nauc_recall_at_1000_max
value: 66.23687386181345
- type: nauc_recall_at_1000_std
value: 20.389989453717625
- type: nauc_recall_at_100_diff1
value: 16.184818683991136
- type: nauc_recall_at_100_max
value: 57.004633019507104
- type: nauc_recall_at_100_std
value: 24.74944798851128
- type: nauc_recall_at_10_diff1
value: 20.14231168000389
- type: nauc_recall_at_10_max
value: 41.81505494607885
- type: nauc_recall_at_10_std
value: -13.588327036006865
- type: nauc_recall_at_1_diff1
value: 49.57988513879831
- type: nauc_recall_at_1_max
value: 40.609452025451915
- type: nauc_recall_at_1_std
value: -11.541103718714977
- type: nauc_recall_at_20_diff1
value: 13.936251711556865
- type: nauc_recall_at_20_max
value: 50.63499099834594
- type: nauc_recall_at_20_std
value: -3.4568556682576865
- type: nauc_recall_at_3_diff1
value: 35.34279224772573
- type: nauc_recall_at_3_max
value: 37.86162276112829
- type: nauc_recall_at_3_std
value: -17.607999329247097
- type: nauc_recall_at_5_diff1
value: 28.953300377672097
- type: nauc_recall_at_5_max
value: 37.98848038772265
- type: nauc_recall_at_5_std
value: -19.469906210936013
- type: ndcg_at_1
value: 51.025
- type: ndcg_at_10
value: 68.65599999999999
- type: ndcg_at_100
value: 70.78
- type: ndcg_at_1000
value: 71.207
- type: ndcg_at_20
value: 69.771
- type: ndcg_at_3
value: 63.202999999999996
- type: ndcg_at_5
value: 66.425
- type: precision_at_1
value: 51.025
- type: precision_at_10
value: 8.647
- type: precision_at_100
value: 0.963
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.543
- type: precision_at_3
value: 23.942
- type: precision_at_5
value: 15.918
- type: recall_at_1
value: 51.025
- type: recall_at_10
value: 86.47500000000001
- type: recall_at_100
value: 96.33800000000001
- type: recall_at_1000
value: 99.70700000000001
- type: recall_at_20
value: 90.869
- type: recall_at_3
value: 71.82600000000001
- type: recall_at_5
value: 79.59
task:
type: Retrieval
- dataset:
config: default
name: MTEB TRECCOVID (default)
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
split: test
type: mteb/trec-covid
metrics:
- type: main_score
value: 67.33
- type: map_at_1
value: 0.209
- type: map_at_10
value: 1.694
- type: map_at_100
value: 9.078999999999999
- type: map_at_1000
value: 21.590999999999998
- type: map_at_20
value: 2.973
- type: map_at_3
value: 0.594
- type: map_at_5
value: 0.9259999999999999
- type: mrr_at_1
value: 76.0
- type: mrr_at_10
value: 86.66666666666666
- type: mrr_at_100
value: 86.66666666666666
- type: mrr_at_1000
value: 86.66666666666666
- type: mrr_at_20
value: 86.66666666666666
- type: mrr_at_3
value: 86.33333333333334
- type: mrr_at_5
value: 86.33333333333334
- type: nauc_map_at_1000_diff1
value: -39.36100175513192
- type: nauc_map_at_1000_max
value: 51.929525559618305
- type: nauc_map_at_1000_std
value: 88.1016909960378
- type: nauc_map_at_100_diff1
value: -34.61735014934496
- type: nauc_map_at_100_max
value: 56.47580379027271
- type: nauc_map_at_100_std
value: 67.38435515182985
- type: nauc_map_at_10_diff1
value: -12.481472547184628
- type: nauc_map_at_10_max
value: 33.265754813595265
- type: nauc_map_at_10_std
value: 18.22638592961484
- type: nauc_map_at_1_diff1
value: 1.2293816647460412
- type: nauc_map_at_1_max
value: 23.006245222860937
- type: nauc_map_at_1_std
value: 5.082037971661686
- type: nauc_map_at_20_diff1
value: -19.628676448681272
- type: nauc_map_at_20_max
value: 38.05654465725153
- type: nauc_map_at_20_std
value: 26.77958279973914
- type: nauc_map_at_3_diff1
value: 1.894562755188629
- type: nauc_map_at_3_max
value: 30.450207405528506
- type: nauc_map_at_3_std
value: 8.162817124670042
- type: nauc_map_at_5_diff1
value: 1.8118041815327512
- type: nauc_map_at_5_max
value: 36.07240804057612
- type: nauc_map_at_5_std
value: 10.818513452904504
- type: nauc_mrr_at_1000_diff1
value: -0.40174560390189173
- type: nauc_mrr_at_1000_max
value: 43.71069182389944
- type: nauc_mrr_at_1000_std
value: 37.65627005519199
- type: nauc_mrr_at_100_diff1
value: -0.40174560390189173
- type: nauc_mrr_at_100_max
value: 43.71069182389944
- type: nauc_mrr_at_100_std
value: 37.65627005519199
- type: nauc_mrr_at_10_diff1
value: -0.40174560390189173
- type: nauc_mrr_at_10_max
value: 43.71069182389944
- type: nauc_mrr_at_10_std
value: 37.65627005519199
- type: nauc_mrr_at_1_diff1
value: -7.977848922730832
- type: nauc_mrr_at_1_max
value: 37.61356753482742
- type: nauc_mrr_at_1_std
value: 34.039975772259226
- type: nauc_mrr_at_20_diff1
value: -0.40174560390189173
- type: nauc_mrr_at_20_max
value: 43.71069182389944
- type: nauc_mrr_at_20_std
value: 37.65627005519199
- type: nauc_mrr_at_3_diff1
value: 1.934992255034202
- type: nauc_mrr_at_3_max
value: 45.21685904162296
- type: nauc_mrr_at_3_std
value: 39.32443911457557
- type: nauc_mrr_at_5_diff1
value: 1.934992255034202
- type: nauc_mrr_at_5_max
value: 45.21685904162296
- type: nauc_mrr_at_5_std
value: 39.32443911457557
- type: nauc_ndcg_at_1000_diff1
value: -40.908094812392115
- type: nauc_ndcg_at_1000_max
value: 48.81499531922747
- type: nauc_ndcg_at_1000_std
value: 82.86337304804559
- type: nauc_ndcg_at_100_diff1
value: -44.56244464473406
- type: nauc_ndcg_at_100_max
value: 40.58624018883107
- type: nauc_ndcg_at_100_std
value: 80.45918244234892
- type: nauc_ndcg_at_10_diff1
value: -29.518074434000603
- type: nauc_ndcg_at_10_max
value: 43.48658903105973
- type: nauc_ndcg_at_10_std
value: 56.823103247390485
- type: nauc_ndcg_at_1_diff1
value: -26.938752512067293
- type: nauc_ndcg_at_1_max
value: 28.738050072310013
- type: nauc_ndcg_at_1_std
value: 38.51773942114455
- type: nauc_ndcg_at_20_diff1
value: -42.09374526480503
- type: nauc_ndcg_at_20_max
value: 39.88753819987586
- type: nauc_ndcg_at_20_std
value: 64.9188937434715
- type: nauc_ndcg_at_3_diff1
value: -18.983747164354074
- type: nauc_ndcg_at_3_max
value: 40.07068201143408
- type: nauc_ndcg_at_3_std
value: 44.520014381841264
- type: nauc_ndcg_at_5_diff1
value: -17.363745221747216
- type: nauc_ndcg_at_5_max
value: 45.3133946971861
- type: nauc_ndcg_at_5_std
value: 46.14383772600112
- type: nauc_precision_at_1000_diff1
value: -33.997592992905865
- type: nauc_precision_at_1000_max
value: 21.194962132845994
- type: nauc_precision_at_1000_std
value: 66.17573850908786
- type: nauc_precision_at_100_diff1
value: -45.17468834913693
- type: nauc_precision_at_100_max
value: 38.919854917565715
- type: nauc_precision_at_100_std
value: 81.8096172142314
- type: nauc_precision_at_10_diff1
value: -29.42371504029257
- type: nauc_precision_at_10_max
value: 44.73436091909716
- type: nauc_precision_at_10_std
value: 60.6846867495612
- type: nauc_precision_at_1_diff1
value: -7.977848922730832
- type: nauc_precision_at_1_max
value: 37.61356753482742
- type: nauc_precision_at_1_std
value: 34.039975772259226
- type: nauc_precision_at_20_diff1
value: -44.20238216430825
- type: nauc_precision_at_20_max
value: 39.17789315325717
- type: nauc_precision_at_20_std
value: 66.31262230366372
- type: nauc_precision_at_3_diff1
value: -4.094499601420467
- type: nauc_precision_at_3_max
value: 47.878469454308245
- type: nauc_precision_at_3_std
value: 44.82390028262911
- type: nauc_precision_at_5_diff1
value: -6.49531959342742
- type: nauc_precision_at_5_max
value: 50.725161705033905
- type: nauc_precision_at_5_std
value: 44.29713551082716
- type: nauc_recall_at_1000_diff1
value: -31.512611908780038
- type: nauc_recall_at_1000_max
value: 46.63381390751818
- type: nauc_recall_at_1000_std
value: 75.17070088378604
- type: nauc_recall_at_100_diff1
value: -28.875944584904158
- type: nauc_recall_at_100_max
value: 54.171746378883675
- type: nauc_recall_at_100_std
value: 56.1907274521453
- type: nauc_recall_at_10_diff1
value: -10.85790669811538
- type: nauc_recall_at_10_max
value: 27.66643799038461
- type: nauc_recall_at_10_std
value: 11.509747430055707
- type: nauc_recall_at_1_diff1
value: 1.2293816647460412
- type: nauc_recall_at_1_max
value: 23.006245222860937
- type: nauc_recall_at_1_std
value: 5.082037971661686
- type: nauc_recall_at_20_diff1
value: -15.447672155452471
- type: nauc_recall_at_20_max
value: 31.74240316416819
- type: nauc_recall_at_20_std
value: 15.003324764456485
- type: nauc_recall_at_3_diff1
value: 4.254127681493859
- type: nauc_recall_at_3_max
value: 30.840766518682173
- type: nauc_recall_at_3_std
value: 5.690923550364749
- type: nauc_recall_at_5_diff1
value: 4.089262491662224
- type: nauc_recall_at_5_max
value: 33.53882138961467
- type: nauc_recall_at_5_std
value: 6.213191881998446
- type: ndcg_at_1
value: 71.0
- type: ndcg_at_10
value: 67.33
- type: ndcg_at_100
value: 50.70099999999999
- type: ndcg_at_1000
value: 45.678999999999995
- type: ndcg_at_20
value: 64.181
- type: ndcg_at_3
value: 71.961
- type: ndcg_at_5
value: 69.14200000000001
- type: precision_at_1
value: 76.0
- type: precision_at_10
value: 72.0
- type: precision_at_100
value: 51.72
- type: precision_at_1000
value: 19.888
- type: precision_at_20
value: 68.2
- type: precision_at_3
value: 78.0
- type: precision_at_5
value: 74.4
- type: recall_at_1
value: 0.209
- type: recall_at_10
value: 1.9369999999999998
- type: recall_at_100
value: 12.466000000000001
- type: recall_at_1000
value: 42.535000000000004
- type: recall_at_20
value: 3.6189999999999998
- type: recall_at_3
value: 0.632
- type: recall_at_5
value: 1.01
task:
type: Retrieval
- dataset:
config: default
name: MTEB TRECCOVID-PL (default)
revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd
split: test
type: clarin-knext/trec-covid-pl
metrics:
- type: main_score
value: 24.014
- type: map_at_1
value: 0.079
- type: map_at_10
value: 0.437
- type: map_at_100
value: 1.4160000000000001
- type: map_at_1000
value: 3.2960000000000003
- type: map_at_20
value: 0.6930000000000001
- type: map_at_3
value: 0.209
- type: map_at_5
value: 0.27599999999999997
- type: mrr_at_1
value: 32.0
- type: mrr_at_10
value: 40.766666666666666
- type: mrr_at_100
value: 42.065712760557446
- type: mrr_at_1000
value: 42.070147350357885
- type: mrr_at_20
value: 41.34215024741341
- type: mrr_at_3
value: 38.0
- type: mrr_at_5
value: 39.9
- type: nauc_map_at_1000_diff1
value: 2.763744410970452
- type: nauc_map_at_1000_max
value: 44.08217037883956
- type: nauc_map_at_1000_std
value: 45.726618026799784
- type: nauc_map_at_100_diff1
value: -1.1063775194811718
- type: nauc_map_at_100_max
value: 34.96148903048783
- type: nauc_map_at_100_std
value: 19.05911651363395
- type: nauc_map_at_10_diff1
value: 8.328485941895645
- type: nauc_map_at_10_max
value: 29.05954535135173
- type: nauc_map_at_10_std
value: -0.5663434331732777
- type: nauc_map_at_1_diff1
value: 15.648422889306588
- type: nauc_map_at_1_max
value: 33.43814058583505
- type: nauc_map_at_1_std
value: 0.38842622009531697
- type: nauc_map_at_20_diff1
value: 1.6239706005789203
- type: nauc_map_at_20_max
value: 30.780719931285766
- type: nauc_map_at_20_std
value: 5.226612687670864
- type: nauc_map_at_3_diff1
value: 14.691780792096715
- type: nauc_map_at_3_max
value: 29.72244349623907
- type: nauc_map_at_3_std
value: -3.894547135006907
- type: nauc_map_at_5_diff1
value: 7.625413465278537
- type: nauc_map_at_5_max
value: 28.061369021765792
- type: nauc_map_at_5_std
value: -1.6405791401954202
- type: nauc_mrr_at_1000_diff1
value: 9.903128384417203
- type: nauc_mrr_at_1000_max
value: 36.58476712156808
- type: nauc_mrr_at_1000_std
value: 11.948350197817941
- type: nauc_mrr_at_100_diff1
value: 9.911332457182505
- type: nauc_mrr_at_100_max
value: 36.5931154968881
- type: nauc_mrr_at_100_std
value: 11.923871293185774
- type: nauc_mrr_at_10_diff1
value: 10.061614580122114
- type: nauc_mrr_at_10_max
value: 35.90157508486573
- type: nauc_mrr_at_10_std
value: 11.683458301136916
- type: nauc_mrr_at_1_diff1
value: 13.560954725462931
- type: nauc_mrr_at_1_max
value: 41.29294659103072
- type: nauc_mrr_at_1_std
value: 23.92967997431232
- type: nauc_mrr_at_20_diff1
value: 9.754021662833347
- type: nauc_mrr_at_20_max
value: 35.765859492846374
- type: nauc_mrr_at_20_std
value: 11.848463872530932
- type: nauc_mrr_at_3_diff1
value: 10.028274713949735
- type: nauc_mrr_at_3_max
value: 38.88433792246913
- type: nauc_mrr_at_3_std
value: 11.48473077363494
- type: nauc_mrr_at_5_diff1
value: 9.335538525973245
- type: nauc_mrr_at_5_max
value: 37.515438355632824
- type: nauc_mrr_at_5_std
value: 11.070968041209992
- type: nauc_ndcg_at_1000_diff1
value: 5.584802003379831
- type: nauc_ndcg_at_1000_max
value: 33.314515131527834
- type: nauc_ndcg_at_1000_std
value: 33.6276642722341
- type: nauc_ndcg_at_100_diff1
value: 3.305268021968464
- type: nauc_ndcg_at_100_max
value: 31.908715963813822
- type: nauc_ndcg_at_100_std
value: 21.516527921316257
- type: nauc_ndcg_at_10_diff1
value: 7.032873935225729
- type: nauc_ndcg_at_10_max
value: 34.44205777276943
- type: nauc_ndcg_at_10_std
value: 7.196543440601352
- type: nauc_ndcg_at_1_diff1
value: 10.629073273765686
- type: nauc_ndcg_at_1_max
value: 50.10213581979629
- type: nauc_ndcg_at_1_std
value: 19.5308700304323
- type: nauc_ndcg_at_20_diff1
value: 4.1467973799104
- type: nauc_ndcg_at_20_max
value: 30.848940009171866
- type: nauc_ndcg_at_20_std
value: 10.699007932982358
- type: nauc_ndcg_at_3_diff1
value: 8.388484432353273
- type: nauc_ndcg_at_3_max
value: 40.198931190038564
- type: nauc_ndcg_at_3_std
value: 9.0164907464323
- type: nauc_ndcg_at_5_diff1
value: 4.519480833729923
- type: nauc_ndcg_at_5_max
value: 35.50336397828203
- type: nauc_ndcg_at_5_std
value: 8.89149616108275
- type: nauc_precision_at_1000_diff1
value: 10.810355967699419
- type: nauc_precision_at_1000_max
value: 36.198978350147165
- type: nauc_precision_at_1000_std
value: 50.02406670342153
- type: nauc_precision_at_100_diff1
value: 3.575117640307563
- type: nauc_precision_at_100_max
value: 32.374410110652754
- type: nauc_precision_at_100_std
value: 27.11269840198216
- type: nauc_precision_at_10_diff1
value: 8.163568076583704
- type: nauc_precision_at_10_max
value: 30.43788895048762
- type: nauc_precision_at_10_std
value: 7.492835893151349
- type: nauc_precision_at_1_diff1
value: 13.560954725462931
- type: nauc_precision_at_1_max
value: 41.29294659103072
- type: nauc_precision_at_1_std
value: 23.92967997431232
- type: nauc_precision_at_20_diff1
value: 3.9343182675494726
- type: nauc_precision_at_20_max
value: 27.92494826281862
- type: nauc_precision_at_20_std
value: 13.512522169356163
- type: nauc_precision_at_3_diff1
value: 7.500566731389045
- type: nauc_precision_at_3_max
value: 32.78072916153323
- type: nauc_precision_at_3_std
value: 5.442592574340379
- type: nauc_precision_at_5_diff1
value: 0.8368868088056831
- type: nauc_precision_at_5_max
value: 28.50268677413763
- type: nauc_precision_at_5_std
value: 6.262437164153216
- type: nauc_recall_at_1000_diff1
value: 6.466492011253024
- type: nauc_recall_at_1000_max
value: 33.29659361447259
- type: nauc_recall_at_1000_std
value: 38.33133164748577
- type: nauc_recall_at_100_diff1
value: -4.710612377509895
- type: nauc_recall_at_100_max
value: 33.36640370485505
- type: nauc_recall_at_100_std
value: 15.00124272531718
- type: nauc_recall_at_10_diff1
value: 8.383464512319398
- type: nauc_recall_at_10_max
value: 27.753627188606263
- type: nauc_recall_at_10_std
value: -6.430500905036131
- type: nauc_recall_at_1_diff1
value: 15.648422889306588
- type: nauc_recall_at_1_max
value: 33.43814058583505
- type: nauc_recall_at_1_std
value: 0.38842622009531697
- type: nauc_recall_at_20_diff1
value: 0.6220898729888212
- type: nauc_recall_at_20_max
value: 26.706071721975373
- type: nauc_recall_at_20_std
value: -0.07228409632534197
- type: nauc_recall_at_3_diff1
value: 14.399942747468852
- type: nauc_recall_at_3_max
value: 29.839734495614795
- type: nauc_recall_at_3_std
value: -7.342370795101286
- type: nauc_recall_at_5_diff1
value: 4.307738089595829
- type: nauc_recall_at_5_max
value: 26.81904935896474
- type: nauc_recall_at_5_std
value: -7.309908018949135
- type: ndcg_at_1
value: 28.999999999999996
- type: ndcg_at_10
value: 24.014
- type: ndcg_at_100
value: 14.601
- type: ndcg_at_1000
value: 12.147
- type: ndcg_at_20
value: 22.093
- type: ndcg_at_3
value: 28.531000000000002
- type: ndcg_at_5
value: 26.311
- type: precision_at_1
value: 32.0
- type: precision_at_10
value: 24.8
- type: precision_at_100
value: 14.06
- type: precision_at_1000
value: 5.814
- type: precision_at_20
value: 23.1
- type: precision_at_3
value: 31.333
- type: precision_at_5
value: 27.6
- type: recall_at_1
value: 0.079
- type: recall_at_10
value: 0.584
- type: recall_at_100
value: 2.843
- type: recall_at_1000
value: 11.053
- type: recall_at_20
value: 1.031
- type: recall_at_3
value: 0.22699999999999998
- type: recall_at_5
value: 0.327
task:
type: Retrieval
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: The Opa1 protein localizes to the mitochondria.Opa1 is found normally
in the mitochondrial intermembrane space.
sentences:
- Which is the cellular localization of the protein Opa1?
- Which are the genes responsible for Dyskeratosis Congenita?
- List blood marker for Non-Hodgkin lymphoma.
- source_sentence: CorrSite identifies potential allosteric ligand-binding sites based
on motion correlation analyses between cavities.We find that CARDS captures allosteric
communication between the two cAMP-Binding Domains (CBDs)Overall, it is demonstrated
that the communication pathways could be multiple and intrinsically disposed,
and the MC path generation approach provides an effective tool for the prediction
of key residues that mediate the allosteric communication in an ensemble of pathways
and functionally plausible residuesWe utilized a data set of 24 known allosteric
sites from 23 monomer proteins to calculate the correlations between potential
ligand-binding sites and corresponding orthosteric sites using a Gaussian network
model (GNM)Here, we introduce the Correlation of All Rotameric and Dynamical States
(CARDS) framework for quantifying correlations between both the structure and
disorder of different regions of a proteinWe present a novel method, "MutInf",
to identify statistically significant correlated motions from equilibrium molecular
dynamics simulationsCorrSite identifies potential allosteric ligand-binding sites
based on motion correlation analyses between cavities.Here, a Monte Carlo (MC)
path generation approach is proposed and implemented to define likely allosteric
pathways through generating an ensemble of maximum probability paths.Here, a Monte
Carlo (MC) path generation approach is proposed and implemented to define likely
allosteric pathways through generating an ensemble of maximum probability paths.
Overall, it is demonstrated that the communication pathways could be multiple
and intrinsically disposed, and the MC path generation approach provides an effective
tool for the prediction of key residues that mediate the allosteric communication
in an ensemble of pathways and functionally plausible residues We utilized a data
set of 24 known allosteric sites from 23 monomer proteins to calculate the correlations
between potential ligand-binding sites and corresponding orthosteric sites using
a Gaussian network model (GNM)A Monte Carlo (MC) path generation approach is proposed
and implemented to define likely allosteric pathways through generating an ensemble
of maximum probability paths. A novel method, "MutInf", to identify statistically
significant correlated motions from equilibrium molecular dynamics simulations.
CorrSite identifies potential alloster-binding sites based on motion correlation
analyses between cavities. The Correlation of All Rotameric and Dynamical States
(CARDS) framework for quantifying correlations between both the structure and
disorder of different regions of a proteinComputational tools for predicting allosteric
pathways in proteins include MCPath, MutInf, pySCA, CorrSite, and CARDS.
sentences:
- Computational tools for predicting allosteric pathways in proteins
- What is PANTHER-PSEP?
- What illness is transmitted by the Lone Star Tick, Amblyomma americanum?
- source_sentence: "Dopaminergic drugs should be given in patients with BMS. \nCatuama\
\ reduces the symptoms of BMS and may be a novel therapeutic strategy for the\
\ treatment of this disease.\nCapsaicin, alpha-lipoic acid (ALA), and clonazepam\
\ were those that showed more reduction in symptoms of BMS.\nTreatment with placebos\
\ produced a response that was 72% as large as the response to active drugs"
sentences:
- What is the cyberknife used for?
- Which compounds exist that are thyroid hormone analogs?
- Which are the drugs utilized for the burning mouth syndrome?
- source_sentence: Tinea is a superficial fungal infections of the skin.
sentences:
- Which molecule is targeted by a monoclonal antibody Mepolizumab?
- What disease is tinea ?
- Which algorithm is used for detection of long repeat expansions?
- source_sentence: Basset is an open source package which applies CNNs to learn the
functional activity of DNA sequences from genomics data. Basset was trained on
a compendium of accessible genomic sites mapped in 164 cell types by DNase-seq,
and demonstrated greater predictive accuracy than previous methods. Basset predictions
for the change in accessibility between variant alleles were far greater for Genome-wide
association study (GWAS) SNPs that are likely to be causal relative to nearby
SNPs in linkage disequilibrium with them. With Basset, a researcher can perform
a single sequencing assay in their cell type of interest and simultaneously learn
that cell's chromatin accessibility code and annotate every mutation in the genome
with its influence on present accessibility and latent potential for accessibility.
Thus, Basset offers a powerful computational approach to annotate and interpret
the noncoding genome.
sentences:
- Givosiran is used for treatment of which disease?
- Describe the applicability of Basset in the context of deep learning
- What is the causative agent of the "Panama disease" affecting bananas?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base BioASQ Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8432203389830508
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9427966101694916
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.961864406779661
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9788135593220338
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8432203389830508
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3142655367231638
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19237288135593222
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0978813559322034
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8432203389830508
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9427966101694916
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.961864406779661
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9788135593220338
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9167805960832026
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8963327280064567
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8971987609787653
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8538135593220338
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9427966101694916
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.961864406779661
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9745762711864406
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8538135593220338
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3142655367231638
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19237288135593222
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09745762711864407
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8538135593220338
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9427966101694916
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.961864406779661
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9745762711864406
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9198462326957965
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9016772598870054
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9026755533837086
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8453389830508474
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9385593220338984
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9555084745762712
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9745762711864406
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8453389830508474
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3128531073446327
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19110169491525425
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09745762711864407
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8453389830508474
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9385593220338984
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9555084745762712
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9745762711864406
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.914207272128957
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8944528517621736
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8952712251263324
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8220338983050848
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9279661016949152
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9449152542372882
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9703389830508474
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8220338983050848
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3093220338983051
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18898305084745767
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09703389830508474
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8220338983050848
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9279661016949152
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9449152542372882
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9703389830508474
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.901534580728345
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8789800242130752
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8801051507894794
name: Cosine Map@100
---
# BGE base BioASQ Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pavanmantha/bge-base-en-bioembed768")
# Run inference
sentences = [
"Basset is an open source package which applies CNNs to learn the functional activity of DNA sequences from genomics data. Basset was trained on a compendium of accessible genomic sites mapped in 164 cell types by DNase-seq, and demonstrated greater predictive accuracy than previous methods. Basset predictions for the change in accessibility between variant alleles were far greater for Genome-wide association study (GWAS) SNPs that are likely to be causal relative to nearby SNPs in linkage disequilibrium with them. With Basset, a researcher can perform a single sequencing assay in their cell type of interest and simultaneously learn that cell's chromatin accessibility code and annotate every mutation in the genome with its influence on present accessibility and latent potential for accessibility. Thus, Basset offers a powerful computational approach to annotate and interpret the noncoding genome.",
'Describe the applicability of Basset in the context of deep learning',
'What is the causative agent of the "Panama disease" affecting bananas?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8432 |
| cosine_accuracy@3 | 0.9428 |
| cosine_accuracy@5 | 0.9619 |
| cosine_accuracy@10 | 0.9788 |
| cosine_precision@1 | 0.8432 |
| cosine_precision@3 | 0.3143 |
| cosine_precision@5 | 0.1924 |
| cosine_precision@10 | 0.0979 |
| cosine_recall@1 | 0.8432 |
| cosine_recall@3 | 0.9428 |
| cosine_recall@5 | 0.9619 |
| cosine_recall@10 | 0.9788 |
| cosine_ndcg@10 | 0.9168 |
| cosine_mrr@10 | 0.8963 |
| **cosine_map@100** | **0.8972** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8538 |
| cosine_accuracy@3 | 0.9428 |
| cosine_accuracy@5 | 0.9619 |
| cosine_accuracy@10 | 0.9746 |
| cosine_precision@1 | 0.8538 |
| cosine_precision@3 | 0.3143 |
| cosine_precision@5 | 0.1924 |
| cosine_precision@10 | 0.0975 |
| cosine_recall@1 | 0.8538 |
| cosine_recall@3 | 0.9428 |
| cosine_recall@5 | 0.9619 |
| cosine_recall@10 | 0.9746 |
| cosine_ndcg@10 | 0.9198 |
| cosine_mrr@10 | 0.9017 |
| **cosine_map@100** | **0.9027** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8453 |
| cosine_accuracy@3 | 0.9386 |
| cosine_accuracy@5 | 0.9555 |
| cosine_accuracy@10 | 0.9746 |
| cosine_precision@1 | 0.8453 |
| cosine_precision@3 | 0.3129 |
| cosine_precision@5 | 0.1911 |
| cosine_precision@10 | 0.0975 |
| cosine_recall@1 | 0.8453 |
| cosine_recall@3 | 0.9386 |
| cosine_recall@5 | 0.9555 |
| cosine_recall@10 | 0.9746 |
| cosine_ndcg@10 | 0.9142 |
| cosine_mrr@10 | 0.8945 |
| **cosine_map@100** | **0.8953** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.822 |
| cosine_accuracy@3 | 0.928 |
| cosine_accuracy@5 | 0.9449 |
| cosine_accuracy@10 | 0.9703 |
| cosine_precision@1 | 0.822 |
| cosine_precision@3 | 0.3093 |
| cosine_precision@5 | 0.189 |
| cosine_precision@10 | 0.097 |
| cosine_recall@1 | 0.822 |
| cosine_recall@3 | 0.928 |
| cosine_recall@5 | 0.9449 |
| cosine_recall@10 | 0.9703 |
| cosine_ndcg@10 | 0.9015 |
| cosine_mrr@10 | 0.879 |
| **cosine_map@100** | **0.8801** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,247 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 102.44 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.78 tokens</li><li>max: 44 tokens</li></ul> |
* Samples:
| positive | anchor |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|
| <code>Restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED), is a common movement disorder characterized by an uncontrollable urge to move because of uncomfortable, sometimes painful sensations in the legs with a diurnal variation and a release with movement.</code> | <code>Willis-Ekbom disease is also known as?</code> |
| <code>Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up['Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up.']Laser in situ keratomileusis is also known as LASIKLaser in situ keratomileusis (LASIK)</code> | <code>What is another name for keratomileusis?</code> |
| <code>CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services.</code> | <code>What is CellMaps?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|
| 0.9624 | 8 | - | 0.8560 | 0.8821 | 0.8904 | 0.8876 |
| 1.2030 | 10 | 1.2833 | - | - | - | - |
| 1.9248 | 16 | - | 0.8655 | 0.8808 | 0.8909 | 0.8889 |
| 2.4060 | 20 | 0.4785 | - | - | - | - |
| 2.8872 | 24 | - | 0.8720 | 0.8875 | 0.8893 | 0.8921 |
| 3.6090 | 30 | 0.2417 | - | - | - | - |
| 3.9699 | 33 | - | 0.8751 | 0.8924 | 0.8955 | 0.8960 |
| 4.8120 | 40 | 0.1607 | - | - | - | - |
| 4.9323 | 41 | - | 0.8799 | 0.8932 | 0.8964 | 0.8952 |
| 5.8947 | 49 | - | 0.8785 | 0.8944 | 0.9009 | 0.8982 |
| 6.0150 | 50 | 0.1152 | - | - | - | - |
| **6.9774** | **58** | **-** | **0.8803** | **0.8947** | **0.9018** | **0.8975** |
| 7.2180 | 60 | 0.0924 | - | - | - | - |
| 7.9398 | 66 | - | 0.8802 | 0.8956 | 0.9016 | 0.8973 |
| 8.4211 | 70 | 0.0832 | - | - | - | - |
| 8.9023 | 74 | - | 0.8801 | 0.8956 | 0.9027 | 0.8972 |
| 9.6241 | 80 | 0.074 | 0.8801 | 0.8953 | 0.9027 | 0.8972 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |