File size: 21,853 Bytes
7a3dff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
---
language:
- en
- ca
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:CoSENTLoss
base_model: microsoft/mpnet-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Dia Internacional del Nen Prematur
  sentences:
  - Premiats a les comarques de Barcelona
  - Les concordances són adjectiu / substantiu o verb / substantiu.
  - Els Mossos en busquen un altre, que va aconseguir fugir en ser enxampats 'in fraganti'
- source_sentence: Vulneració del dret a la llibertat
  sentences:
  - Vulneració del dret a un jutge imparcial
  - Detenen un home a Malgrat de Mar per apallissar un escombriaire
  - La víctima ha rebut un cop de puny i ha caigut a terra inconscient
- source_sentence: Agafem un taxi i ens plantem allà.
  sentences:
  - És una activitat gratuïta oberta al públic general.
  - El líder del PSC, Miquel Iceta, serà el nou president del Senat
  - El PSOE ja no descarta l’aplicació de l’article 155 de la Constitució a Catalunya
- source_sentence: No ho entenc, però és el que hi ha.
  sentences:
  - és dels plats que a casa ens encanten!
  - El Punt d'Informació Juvenil és el servei més actiu del centre.
  - Puigdemont reunirà dimecres a Bèlgica els diputats de JxCat
- source_sentence: Però que hi ha de cert en tot això?
  sentences:
  - Però, què hi ha de veritat en tot això?
  - Els camioners dissolen la marxa lenta a les rondes de Barcelona
  - El 112 atén 747.730 trucades durant el primer semestre, un 9,6% més que l'any
    passat
pipeline_tag: sentence-similarity
model-index:
- name: MPNet base trained on semantic text similarity
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: pearson_cosine
      value: 0.9369799393019737
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.991833254558149
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.9582116235734125
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.9876060961452328
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9594231143506534
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.9887559900790531
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.9469313911363318
      name: Pearson Dot
    - type: spearman_dot
      value: 0.9834282009396937
      name: Spearman Dot
    - type: pearson_max
      value: 0.9594231143506534
      name: Pearson Max
    - type: spearman_max
      value: 0.991833254558149
      name: Spearman Max
    - type: pearson_cosine
      value: 0.5855972037779524
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5854785473306573
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.5881281979560977
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.578667646485271
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.5851079475768374
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.5754637407144132
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5612927132777441
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5630862098985
      name: Spearman Dot
    - type: pearson_max
      value: 0.5881281979560977
      name: Pearson Max
    - type: spearman_max
      value: 0.5854785473306573
      name: Spearman Max
    - type: pearson_cosine
      value: 0.6501162382185041
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6819594226888658
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6517756634326819
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6701084565797553
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6553647425414415
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.675292747578234
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6350099608995957
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6458150666120989
      name: Spearman Dot
    - type: pearson_max
      value: 0.6553647425414415
      name: Pearson Max
    - type: spearman_max
      value: 0.6819594226888658
      name: Spearman Max
---

# MPNet base trained on semantic text similarity

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base) on the [projecte-aina/sts-ca](https://huggingface.co./datasets/projecte-aina/sts-ca) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [projecte-aina/sts-ca](https://huggingface.co./datasets/projecte-aina/sts-ca)
- **Languages:** en, ca
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pauhidalgoo/finetuned-sts-ca-mpnet-base")
# Run inference
sentences = [
    'Però que hi ha de cert en tot això?',
    'Però, què hi ha de veritat en tot això?',
    'Els camioners dissolen la marxa lenta a les rondes de Barcelona',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.937      |
| **spearman_cosine** | **0.9918** |
| pearson_manhattan   | 0.9582     |
| spearman_manhattan  | 0.9876     |
| pearson_euclidean   | 0.9594     |
| spearman_euclidean  | 0.9888     |
| pearson_dot         | 0.9469     |
| spearman_dot        | 0.9834     |
| pearson_max         | 0.9594     |
| spearman_max        | 0.9918     |

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.5856     |
| **spearman_cosine** | **0.5855** |
| pearson_manhattan   | 0.5881     |
| spearman_manhattan  | 0.5787     |
| pearson_euclidean   | 0.5851     |
| spearman_euclidean  | 0.5755     |
| pearson_dot         | 0.5613     |
| spearman_dot        | 0.5631     |
| pearson_max         | 0.5881     |
| spearman_max        | 0.5855     |

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.6501    |
| **spearman_cosine** | **0.682** |
| pearson_manhattan   | 0.6518    |
| spearman_manhattan  | 0.6701    |
| pearson_euclidean   | 0.6554    |
| spearman_euclidean  | 0.6753    |
| pearson_dot         | 0.635     |
| spearman_dot        | 0.6458    |
| pearson_max         | 0.6554    |
| spearman_max        | 0.682     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### projecte-aina/sts-ca

* Dataset: [projecte-aina/sts-ca](https://huggingface.co./datasets/projecte-aina/sts-ca)
* Size: 2,073 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | label                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                          |
  | details | <ul><li>min: 10 tokens</li><li>mean: 32.36 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 30.57 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.56</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                                                                                            | sentence2                                                                                                                                                            | label                           |
  |:-------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
  | <code>Atorga per primer cop les mencions Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència Universitària</code> | <code>Creen la menció M. Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència universitària</code>                                                 | <code>3.5</code>                |
  | <code>Finalment, afegiu-hi els bolets que haureu saltat en una paella amb oli i deixeu-ho coure tot junt durant 5 minuts.</code>     | <code>Finalment, poseu-hi les minipastanagues tallades a dauets, els pèsols, rectifiqueu-ho de sal i deixeu-ho coure tot junt durant un parell de minuts més.</code> | <code>1.25</code>               |
  | <code>El TC suspèn el pla d'acció exterior i de relacions amb la UE de la Generalitat</code>                                         | <code>El Constitucional manté la suspensió del pla estratègic d'acció exterior i relacions amb la UE</code>                                                          | <code>3.6700000762939453</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### projecte-aina/sts-ca

* Dataset: [projecte-aina/sts-ca](https://huggingface.co./datasets/projecte-aina/sts-ca)
* Size: 500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | label                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                          |
  | details | <ul><li>min: 10 tokens</li><li>mean: 32.94 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 31.42 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.58</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                                                                                        | sentence2                                                                                                                        | label                           |
  |:---------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
  | <code>L'euríbor puja una centèsima fins el -0,189% al gener després de setze mesos de caigudes</code>                            | <code>La morositat de bancs i caixes repunta moderadament fins el 9,44%, després d'onze mesos de caigudes</code>                 | <code>1.6699999570846558</code> |
  | <code>Demanen 3 anys de presó a l'ex treballador d'una farmàcia de Lleida per robar més de 550 unitats de Viagra i Cialis</code> | <code>L'extreballador d'una farmàcia de Lleida accepta sis mesos de presó per robar més de 500 unitats de Viagra i Cialis</code> | <code>2.0</code>                |
  | <code>Es tracta d'un jove de 20 anys que ha estat denunciat als Mossos d'Esquadra</code>                                         | <code>Es tracta d'un jove de 21 anys que ha estat denunciat penalment pels Mossos</code>                                         | <code>3.0</code>                |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 40
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 40
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step | Training Loss | spearman_cosine |
|:-------:|:----:|:-------------:|:---------------:|
| 3.8462  | 500  | 4.5209        | -               |
| 7.6923  | 1000 | 4.1445        | -               |
| 11.5385 | 1500 | 3.9291        | -               |
| 15.3846 | 2000 | 3.6952        | -               |
| 19.2308 | 2500 | 3.5393        | -               |
| 23.0769 | 3000 | 3.3778        | -               |
| 26.9231 | 3500 | 3.1712        | -               |
| 30.7692 | 4000 | 2.8265        | -               |
| 34.6154 | 4500 | 2.6265        | -               |
| 38.4615 | 5000 | 2.3259        | -               |
| 40.0    | 5200 | -             | 0.6820          |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->