File size: 21,853 Bytes
7a3dff5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
---
language:
- en
- ca
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:CoSENTLoss
base_model: microsoft/mpnet-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Dia Internacional del Nen Prematur
sentences:
- Premiats a les comarques de Barcelona
- Les concordances són adjectiu / substantiu o verb / substantiu.
- Els Mossos en busquen un altre, que va aconseguir fugir en ser enxampats 'in fraganti'
- source_sentence: Vulneració del dret a la llibertat
sentences:
- Vulneració del dret a un jutge imparcial
- Detenen un home a Malgrat de Mar per apallissar un escombriaire
- La víctima ha rebut un cop de puny i ha caigut a terra inconscient
- source_sentence: Agafem un taxi i ens plantem allà.
sentences:
- És una activitat gratuïta oberta al públic general.
- El líder del PSC, Miquel Iceta, serà el nou president del Senat
- El PSOE ja no descarta l’aplicació de l’article 155 de la Constitució a Catalunya
- source_sentence: No ho entenc, però és el que hi ha.
sentences:
- és dels plats que a casa ens encanten!
- El Punt d'Informació Juvenil és el servei més actiu del centre.
- Puigdemont reunirà dimecres a Bèlgica els diputats de JxCat
- source_sentence: Però que hi ha de cert en tot això?
sentences:
- Però, què hi ha de veritat en tot això?
- Els camioners dissolen la marxa lenta a les rondes de Barcelona
- El 112 atén 747.730 trucades durant el primer semestre, un 9,6% més que l'any
passat
pipeline_tag: sentence-similarity
model-index:
- name: MPNet base trained on semantic text similarity
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.9369799393019737
name: Pearson Cosine
- type: spearman_cosine
value: 0.991833254558149
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9582116235734125
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9876060961452328
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9594231143506534
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9887559900790531
name: Spearman Euclidean
- type: pearson_dot
value: 0.9469313911363318
name: Pearson Dot
- type: spearman_dot
value: 0.9834282009396937
name: Spearman Dot
- type: pearson_max
value: 0.9594231143506534
name: Pearson Max
- type: spearman_max
value: 0.991833254558149
name: Spearman Max
- type: pearson_cosine
value: 0.5855972037779524
name: Pearson Cosine
- type: spearman_cosine
value: 0.5854785473306573
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5881281979560977
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.578667646485271
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5851079475768374
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5754637407144132
name: Spearman Euclidean
- type: pearson_dot
value: 0.5612927132777441
name: Pearson Dot
- type: spearman_dot
value: 0.5630862098985
name: Spearman Dot
- type: pearson_max
value: 0.5881281979560977
name: Pearson Max
- type: spearman_max
value: 0.5854785473306573
name: Spearman Max
- type: pearson_cosine
value: 0.6501162382185041
name: Pearson Cosine
- type: spearman_cosine
value: 0.6819594226888658
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6517756634326819
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6701084565797553
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6553647425414415
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.675292747578234
name: Spearman Euclidean
- type: pearson_dot
value: 0.6350099608995957
name: Pearson Dot
- type: spearman_dot
value: 0.6458150666120989
name: Spearman Dot
- type: pearson_max
value: 0.6553647425414415
name: Pearson Max
- type: spearman_max
value: 0.6819594226888658
name: Spearman Max
---
# MPNet base trained on semantic text similarity
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base) on the [projecte-aina/sts-ca](https://huggingface.co./datasets/projecte-aina/sts-ca) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [projecte-aina/sts-ca](https://huggingface.co./datasets/projecte-aina/sts-ca)
- **Languages:** en, ca
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pauhidalgoo/finetuned-sts-ca-mpnet-base")
# Run inference
sentences = [
'Però que hi ha de cert en tot això?',
'Però, què hi ha de veritat en tot això?',
'Els camioners dissolen la marxa lenta a les rondes de Barcelona',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.937 |
| **spearman_cosine** | **0.9918** |
| pearson_manhattan | 0.9582 |
| spearman_manhattan | 0.9876 |
| pearson_euclidean | 0.9594 |
| spearman_euclidean | 0.9888 |
| pearson_dot | 0.9469 |
| spearman_dot | 0.9834 |
| pearson_max | 0.9594 |
| spearman_max | 0.9918 |
#### Semantic Similarity
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.5856 |
| **spearman_cosine** | **0.5855** |
| pearson_manhattan | 0.5881 |
| spearman_manhattan | 0.5787 |
| pearson_euclidean | 0.5851 |
| spearman_euclidean | 0.5755 |
| pearson_dot | 0.5613 |
| spearman_dot | 0.5631 |
| pearson_max | 0.5881 |
| spearman_max | 0.5855 |
#### Semantic Similarity
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.6501 |
| **spearman_cosine** | **0.682** |
| pearson_manhattan | 0.6518 |
| spearman_manhattan | 0.6701 |
| pearson_euclidean | 0.6554 |
| spearman_euclidean | 0.6753 |
| pearson_dot | 0.635 |
| spearman_dot | 0.6458 |
| pearson_max | 0.6554 |
| spearman_max | 0.682 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### projecte-aina/sts-ca
* Dataset: [projecte-aina/sts-ca](https://huggingface.co./datasets/projecte-aina/sts-ca)
* Size: 2,073 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 10 tokens</li><li>mean: 32.36 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 30.57 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.56</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>Atorga per primer cop les mencions Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència Universitària</code> | <code>Creen la menció M. Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència universitària</code> | <code>3.5</code> |
| <code>Finalment, afegiu-hi els bolets que haureu saltat en una paella amb oli i deixeu-ho coure tot junt durant 5 minuts.</code> | <code>Finalment, poseu-hi les minipastanagues tallades a dauets, els pèsols, rectifiqueu-ho de sal i deixeu-ho coure tot junt durant un parell de minuts més.</code> | <code>1.25</code> |
| <code>El TC suspèn el pla d'acció exterior i de relacions amb la UE de la Generalitat</code> | <code>El Constitucional manté la suspensió del pla estratègic d'acció exterior i relacions amb la UE</code> | <code>3.6700000762939453</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### projecte-aina/sts-ca
* Dataset: [projecte-aina/sts-ca](https://huggingface.co./datasets/projecte-aina/sts-ca)
* Size: 500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 10 tokens</li><li>mean: 32.94 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 31.42 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.58</li><li>max: 5.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:---------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>L'euríbor puja una centèsima fins el -0,189% al gener després de setze mesos de caigudes</code> | <code>La morositat de bancs i caixes repunta moderadament fins el 9,44%, després d'onze mesos de caigudes</code> | <code>1.6699999570846558</code> |
| <code>Demanen 3 anys de presó a l'ex treballador d'una farmàcia de Lleida per robar més de 550 unitats de Viagra i Cialis</code> | <code>L'extreballador d'una farmàcia de Lleida accepta sis mesos de presó per robar més de 500 unitats de Viagra i Cialis</code> | <code>2.0</code> |
| <code>Es tracta d'un jove de 20 anys que ha estat denunciat als Mossos d'Esquadra</code> | <code>Es tracta d'un jove de 21 anys que ha estat denunciat penalment pels Mossos</code> | <code>3.0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 40
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 40
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | spearman_cosine |
|:-------:|:----:|:-------------:|:---------------:|
| 3.8462 | 500 | 4.5209 | - |
| 7.6923 | 1000 | 4.1445 | - |
| 11.5385 | 1500 | 3.9291 | - |
| 15.3846 | 2000 | 3.6952 | - |
| 19.2308 | 2500 | 3.5393 | - |
| 23.0769 | 3000 | 3.3778 | - |
| 26.9231 | 3500 | 3.1712 | - |
| 30.7692 | 4000 | 2.8265 | - |
| 34.6154 | 4500 | 2.6265 | - |
| 38.4615 | 5000 | 2.3259 | - |
| 40.0 | 5200 | - | 0.6820 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |