--- library_name: transformers license: mit datasets: - c3rl/IIIT-INDIC-HW-WORDS-Hindi language: - ne metrics: - cer base_model: - google/vit-base-patch16-224-in21k - amitness/roberta-base-ne pipeline_tag: image-to-text --- # Model Card for Model ID ## Model Details # TrOCR Devanagari - Handwritten Text Recognition ## Overview TrOCR Devanagari is an end-to-end Vision Encoder-Decoder model built to recognize and convert handwritten Devanagari script (specifically for Nepali language) into machine-readable text. It leverages a Vision Transformer (ViT) as the encoder and uses a transformer-based decoder (NepBERT) to produce textual output. This project aims to assist in digitizing handwritten Nepali documents. ## Model Architecture The model pipeline includes the following steps: 1. **Text Detection:** Extracts regions of interest from scanned handwritten documents. 2. **Image Preprocessing:** Resizes and pads input images to feed into the model. 3. **Text Recognition:** Uses the TrOCR-based Vision Encoder Decoder model to predict handwritten text. 4. **UI Interface (Optional):** Displays the results and enables user interaction with the system. ## Model Information - **Model Name:** TrOCR Devanagari - **Developed by:** Anil Paudel, Aayush Puri, Yubaraj Sigdel - **Language:** Nepali - **License:** MIT (tentative) - **Model Type:** Vision Encoder Decoder - **Repository:** [paudelanil/trocr-devanagari-2](https://huggingface.co./paudelanil/trocr-devanagari-2) - **Training Data:** IIIT-HW Dataset - **Evaluation Metric:** CER (Character Error Rate) - **Hardware Used:** NVIDIA RTX A4500 ## Getting Started ### Installation To use the model, ensure you have the following Python packages installed: ```bash pip install torch transformers pillow ``` ### Preprocessing Function The image preprocessing function is used to resize images to the target size while maintaining the aspect ratio and padding the remaining space. ```python from PIL import Image def preprocess_image(image): target_size = (224, 224) original_size = image.size aspect_ratio = original_size[0] / original_size[1] if aspect_ratio > 1: new_width = target_size[0] new_height = int(target_size[0] / aspect_ratio) else: new_height = target_size[1] new_width = int(target_size[1] * aspect_ratio) resized_img = image.resize((new_width, new_height)) padding_width = target_size[0] - new_width padding_height = target_size[1] - new_height pad_left = padding_width // 2 pad_top = padding_height // 2 pad_image = Image.new('RGB', target_size, (255, 255, 255)) pad_image.paste(resized_img, (pad_left, pad_top)) return pad_image ``` ### Prediction Code Here’s how you can use the model for text recognition: ```python import torch from PIL import Image from transformers import AutoTokenizer, VisionEncoderDecoderModel, ViTFeatureExtractor, TrOCRProcessor # Load the model and processor tokenizer = AutoTokenizer.from_pretrained("aayushpuri01/TrOCR-Devanagari") model1 = VisionEncoderDecoderModel.from_pretrained("aayushpuri01/TrOCR-Devanagari") feature_extractor1 = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') processor1 = TrOCRProcessor(feature_extractor=feature_extractor1, tokenizer=tokenizer) device = 'cuda' if torch.cuda.is_available() else 'cpu' model1.to(device) # Prediction function def predict(image): # Preprocess the image image = Image.open(image).convert("RGB") image = preprocess_image(image) pixel_values = processor1(image, return_tensors="pt").pixel_values.to(device) # Generate text from the image generated_ids = model1.generate(pixel_values) generated_text = processor1.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text ``` ### Usage Example ```python # Load and predict image_path = "path_to_your_image.jpg" predicted_text = predict(image_path) print("Predicted Text:", predicted_text) ``` ## Training Hyperparameters ```python training_args = Seq2SeqTrainingArguments( predict_with_generate=True, evaluation_strategy="steps", per_device_train_batch_size=32, per_device_eval_batch_size=32, output_dir='/workspace/checkpoint-save/', save_total_limit=2, logging_steps=2, save_steps=1000, eval_steps=1000, save_strategy="steps", load_best_model_at_end=True, metric_for_best_model="cer", greater_is_better=False, num_train_epochs=15 ) ``` ## License The model is shared under the MIT license. For details, see the [LICENSE](LICENSE) file. ## Acknowledgments This model is based on the 🤗 Transformers library, and uses the ViT encoder and NepBERT decoder architecture. Special thanks to the IIIT-HW dataset contributors. --- Feel free to explore the project and contribute to the repository!