paudelanil commited on
Commit
e58e8b5
1 Parent(s): ea361d8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -183
README.md CHANGED
@@ -11,189 +11,137 @@ tags: []
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
11
 
12
  ## Model Details
13
 
 
14
 
15
+ # TrOCR Devanagari - Handwritten Text Recognition
16
+
17
+ ## Overview
18
+ TrOCR Devanagari is an end-to-end Vision Encoder-Decoder model built to recognize and convert handwritten Devanagari script (specifically for Nepali language) into machine-readable text. It leverages a Vision Transformer (ViT) as the encoder and uses a transformer-based decoder (NepBERT) to produce textual output. This project aims to assist in digitizing handwritten Nepali documents.
19
+
20
+ ## Model Architecture
21
+ The model pipeline includes the following steps:
22
+ 1. **Text Detection:** Extracts regions of interest from scanned handwritten documents.
23
+ 2. **Image Preprocessing:** Resizes and pads input images to feed into the model.
24
+ 3. **Text Recognition:** Uses the TrOCR-based Vision Encoder Decoder model to predict handwritten text.
25
+ 4. **UI Interface (Optional):** Displays the results and enables user interaction with the system.
26
+
27
+ ## Model Information
28
+ - **Model Name:** TrOCR Devanagari
29
+ - **Developed by:** Anil Paudel, Aayush Puri, Yubaraj Sigdel
30
+ - **Language:** Nepali
31
+ - **License:** MIT (tentative)
32
+ - **Model Type:** Vision Encoder Decoder
33
+ - **Repository:** [paudelanil/trocr-devanagari-2](https://huggingface.co/paudelanil/trocr-devanagari-2)
34
+ - **Training Data:** IIIT-HW Dataset
35
+ - **Evaluation Metric:** CER (Character Error Rate)
36
+ - **Hardware Used:** NVIDIA RTX A4500
37
+
38
+ ## Getting Started
39
+
40
+ ### Installation
41
+
42
+ To use the model, ensure you have the following Python packages installed:
43
+ ```bash
44
+ pip install torch transformers pillow
45
+ ```
46
+
47
+ ### Preprocessing Function
48
+
49
+ The image preprocessing function is used to resize images to the target size while maintaining the aspect ratio and padding the remaining space.
50
+
51
+ ```python
52
+ from PIL import Image
53
+
54
+ def preprocess_image(image):
55
+ target_size = (224, 224)
56
+ original_size = image.size
57
+
58
+ aspect_ratio = original_size[0] / original_size[1]
59
+ if aspect_ratio > 1:
60
+ new_width = target_size[0]
61
+ new_height = int(target_size[0] / aspect_ratio)
62
+ else:
63
+ new_height = target_size[1]
64
+ new_width = int(target_size[1] * aspect_ratio)
65
+
66
+ resized_img = image.resize((new_width, new_height))
67
+
68
+ padding_width = target_size[0] - new_width
69
+ padding_height = target_size[1] - new_height
70
+ pad_left = padding_width // 2
71
+ pad_top = padding_height // 2
72
+
73
+ pad_image = Image.new('RGB', target_size, (255, 255, 255))
74
+ pad_image.paste(resized_img, (pad_left, pad_top))
75
+ return pad_image
76
+ ```
77
+
78
+ ### Prediction Code
79
+
80
+ Here’s how you can use the model for text recognition:
81
+
82
+ ```python
83
+ import torch
84
+ from PIL import Image
85
+ from transformers import AutoTokenizer, VisionEncoderDecoderModel, ViTFeatureExtractor, TrOCRProcessor
86
+
87
+ # Load the model and processor
88
+ tokenizer = AutoTokenizer.from_pretrained("aayushpuri01/TrOCR-Devanagari")
89
+ model1 = VisionEncoderDecoderModel.from_pretrained("aayushpuri01/TrOCR-Devanagari")
90
+ feature_extractor1 = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
91
+ processor1 = TrOCRProcessor(feature_extractor=feature_extractor1, tokenizer=tokenizer)
92
+
93
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
94
+ model1.to(device)
95
+
96
+ # Prediction function
97
+ def predict(image):
98
+ # Preprocess the image
99
+ image = Image.open(image).convert("RGB")
100
+ image = preprocess_image(image)
101
+ pixel_values = processor1(image, return_tensors="pt").pixel_values.to(device)
102
+
103
+ # Generate text from the image
104
+ generated_ids = model1.generate(pixel_values)
105
+ generated_text = processor1.batch_decode(generated_ids, skip_special_tokens=True)[0]
106
+
107
+ return generated_text
108
+ ```
109
+
110
+ ### Usage Example
111
+
112
+ ```python
113
+ # Load and predict
114
+ image_path = "path_to_your_image.jpg"
115
+ predicted_text = predict(image_path)
116
+ print("Predicted Text:", predicted_text)
117
+ ```
118
+
119
+ ## Training Hyperparameters
120
+ ```python
121
+ training_args = Seq2SeqTrainingArguments(
122
+ predict_with_generate=True,
123
+ evaluation_strategy="steps",
124
+ per_device_train_batch_size=32,
125
+ per_device_eval_batch_size=32,
126
+ output_dir='/workspace/checkpoint-save/',
127
+ save_total_limit=2,
128
+ logging_steps=2,
129
+ save_steps=1000,
130
+ eval_steps=1000,
131
+ save_strategy="steps",
132
+ load_best_model_at_end=True,
133
+ metric_for_best_model="cer",
134
+ greater_is_better=False,
135
+ num_train_epochs=15
136
+ )
137
+ ```
138
+
139
+ ## License
140
+ The model is shared under the MIT license. For details, see the [LICENSE](LICENSE) file.
141
+
142
+ ## Acknowledgments
143
+ This model is based on the 🤗 Transformers library, and uses the ViT encoder and NepBERT decoder architecture. Special thanks to the IIIT-HW dataset contributors.
144
 
145
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
+ Feel free to explore the project and contribute to the repository!