paudelanil
commited on
Commit
•
e58e8b5
1
Parent(s):
ea361d8
Update README.md
Browse files
README.md
CHANGED
@@ -11,189 +11,137 @@ tags: []
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
### Model Description
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
|
|
14 |
|
15 |
+
# TrOCR Devanagari - Handwritten Text Recognition
|
16 |
+
|
17 |
+
## Overview
|
18 |
+
TrOCR Devanagari is an end-to-end Vision Encoder-Decoder model built to recognize and convert handwritten Devanagari script (specifically for Nepali language) into machine-readable text. It leverages a Vision Transformer (ViT) as the encoder and uses a transformer-based decoder (NepBERT) to produce textual output. This project aims to assist in digitizing handwritten Nepali documents.
|
19 |
+
|
20 |
+
## Model Architecture
|
21 |
+
The model pipeline includes the following steps:
|
22 |
+
1. **Text Detection:** Extracts regions of interest from scanned handwritten documents.
|
23 |
+
2. **Image Preprocessing:** Resizes and pads input images to feed into the model.
|
24 |
+
3. **Text Recognition:** Uses the TrOCR-based Vision Encoder Decoder model to predict handwritten text.
|
25 |
+
4. **UI Interface (Optional):** Displays the results and enables user interaction with the system.
|
26 |
+
|
27 |
+
## Model Information
|
28 |
+
- **Model Name:** TrOCR Devanagari
|
29 |
+
- **Developed by:** Anil Paudel, Aayush Puri, Yubaraj Sigdel
|
30 |
+
- **Language:** Nepali
|
31 |
+
- **License:** MIT (tentative)
|
32 |
+
- **Model Type:** Vision Encoder Decoder
|
33 |
+
- **Repository:** [paudelanil/trocr-devanagari-2](https://huggingface.co/paudelanil/trocr-devanagari-2)
|
34 |
+
- **Training Data:** IIIT-HW Dataset
|
35 |
+
- **Evaluation Metric:** CER (Character Error Rate)
|
36 |
+
- **Hardware Used:** NVIDIA RTX A4500
|
37 |
+
|
38 |
+
## Getting Started
|
39 |
+
|
40 |
+
### Installation
|
41 |
+
|
42 |
+
To use the model, ensure you have the following Python packages installed:
|
43 |
+
```bash
|
44 |
+
pip install torch transformers pillow
|
45 |
+
```
|
46 |
+
|
47 |
+
### Preprocessing Function
|
48 |
+
|
49 |
+
The image preprocessing function is used to resize images to the target size while maintaining the aspect ratio and padding the remaining space.
|
50 |
+
|
51 |
+
```python
|
52 |
+
from PIL import Image
|
53 |
+
|
54 |
+
def preprocess_image(image):
|
55 |
+
target_size = (224, 224)
|
56 |
+
original_size = image.size
|
57 |
+
|
58 |
+
aspect_ratio = original_size[0] / original_size[1]
|
59 |
+
if aspect_ratio > 1:
|
60 |
+
new_width = target_size[0]
|
61 |
+
new_height = int(target_size[0] / aspect_ratio)
|
62 |
+
else:
|
63 |
+
new_height = target_size[1]
|
64 |
+
new_width = int(target_size[1] * aspect_ratio)
|
65 |
+
|
66 |
+
resized_img = image.resize((new_width, new_height))
|
67 |
+
|
68 |
+
padding_width = target_size[0] - new_width
|
69 |
+
padding_height = target_size[1] - new_height
|
70 |
+
pad_left = padding_width // 2
|
71 |
+
pad_top = padding_height // 2
|
72 |
+
|
73 |
+
pad_image = Image.new('RGB', target_size, (255, 255, 255))
|
74 |
+
pad_image.paste(resized_img, (pad_left, pad_top))
|
75 |
+
return pad_image
|
76 |
+
```
|
77 |
+
|
78 |
+
### Prediction Code
|
79 |
+
|
80 |
+
Here’s how you can use the model for text recognition:
|
81 |
+
|
82 |
+
```python
|
83 |
+
import torch
|
84 |
+
from PIL import Image
|
85 |
+
from transformers import AutoTokenizer, VisionEncoderDecoderModel, ViTFeatureExtractor, TrOCRProcessor
|
86 |
+
|
87 |
+
# Load the model and processor
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained("aayushpuri01/TrOCR-Devanagari")
|
89 |
+
model1 = VisionEncoderDecoderModel.from_pretrained("aayushpuri01/TrOCR-Devanagari")
|
90 |
+
feature_extractor1 = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
91 |
+
processor1 = TrOCRProcessor(feature_extractor=feature_extractor1, tokenizer=tokenizer)
|
92 |
+
|
93 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
94 |
+
model1.to(device)
|
95 |
+
|
96 |
+
# Prediction function
|
97 |
+
def predict(image):
|
98 |
+
# Preprocess the image
|
99 |
+
image = Image.open(image).convert("RGB")
|
100 |
+
image = preprocess_image(image)
|
101 |
+
pixel_values = processor1(image, return_tensors="pt").pixel_values.to(device)
|
102 |
+
|
103 |
+
# Generate text from the image
|
104 |
+
generated_ids = model1.generate(pixel_values)
|
105 |
+
generated_text = processor1.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
106 |
+
|
107 |
+
return generated_text
|
108 |
+
```
|
109 |
+
|
110 |
+
### Usage Example
|
111 |
+
|
112 |
+
```python
|
113 |
+
# Load and predict
|
114 |
+
image_path = "path_to_your_image.jpg"
|
115 |
+
predicted_text = predict(image_path)
|
116 |
+
print("Predicted Text:", predicted_text)
|
117 |
+
```
|
118 |
+
|
119 |
+
## Training Hyperparameters
|
120 |
+
```python
|
121 |
+
training_args = Seq2SeqTrainingArguments(
|
122 |
+
predict_with_generate=True,
|
123 |
+
evaluation_strategy="steps",
|
124 |
+
per_device_train_batch_size=32,
|
125 |
+
per_device_eval_batch_size=32,
|
126 |
+
output_dir='/workspace/checkpoint-save/',
|
127 |
+
save_total_limit=2,
|
128 |
+
logging_steps=2,
|
129 |
+
save_steps=1000,
|
130 |
+
eval_steps=1000,
|
131 |
+
save_strategy="steps",
|
132 |
+
load_best_model_at_end=True,
|
133 |
+
metric_for_best_model="cer",
|
134 |
+
greater_is_better=False,
|
135 |
+
num_train_epochs=15
|
136 |
+
)
|
137 |
+
```
|
138 |
+
|
139 |
+
## License
|
140 |
+
The model is shared under the MIT license. For details, see the [LICENSE](LICENSE) file.
|
141 |
+
|
142 |
+
## Acknowledgments
|
143 |
+
This model is based on the 🤗 Transformers library, and uses the ViT encoder and NepBERT decoder architecture. Special thanks to the IIIT-HW dataset contributors.
|
144 |
|
145 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
Feel free to explore the project and contribute to the repository!
|