File size: 6,992 Bytes
6923a2e 32bb444 5f4bcb6 6923a2e 5f4bcb6 6923a2e 5f4bcb6 6923a2e 5f4bcb6 c36e9d0 5f4bcb6 6923a2e 5f4bcb6 6923a2e 5f4bcb6 6923a2e 5f4bcb6 6923a2e 5f4bcb6 6923a2e 5f4bcb6 6923a2e 5f4bcb6 6923a2e 5f4bcb6 6923a2e 5f4bcb6 6923a2e 5f4bcb6 6923a2e 5f4bcb6 943eec9 5f4bcb6 943eec9 5f4bcb6 943eec9 5f4bcb6 943eec9 5f4bcb6 7a353b3 5f4bcb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
license: cc-by-sa-4.0
language:
- en
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- partypress
- political science
- parties
- press releases
widget:
- text: "The Labour Party will seek to re-open negotiations on sugar production on the possibility of regaining sugar quota when the matter comes up for review at EU level.The commitment follows last week's hearing of the Oireachtas Agricultural Committee at which it was stated that Ireland could not have access to sugar quota at this time.Sean Sherlock said: What this means in real terms is that Ireland is not allowed to produce sugar for the EU domestic market nor for export to countries outside the EU. However, the review of the current EU sugar regime scheduled to take place in 2014 must be seized as an opportunity to secure an allocation of tonnage or quota to enable Ireland produce sugar again. While this is an issue dominated by countries such as Germany and France the Labour Party will adopt a strong position and we will be seeking a feasibility study involving all stakeholders and a renegotiation at European level through intense dialogue with our European partners."
---
# PARTYPRESS monolingual Ireland
Fine-tuned model, based on [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co./distilbert-base-uncased-finetuned-sst-2-english). Used in [Erfort et al. (2023)](https://doi.org/10.1177/20531680231183512), building on the PARTYPRESS database. For the downstream task of classyfing press releases from political parties into 23 unique policy areas we achieve a performance comparable to expert human coders.
## Model description
The PARTYPRESS monolingual model builds on [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co./distilbert-base-uncased-finetuned-sst-2-english) but has a supervised component. This means, it was fine-tuned using texts labeled by humans. The labels indicate 23 different political issue categories derived from the Comparative Agendas Project (CAP):
| Code | Issue |
|--|-------|
| 1 | Macroeconomics |
| 2 | Civil Rights |
| 3 | Health |
| 4 | Agriculture |
| 5 | Labor |
| 6 | Education |
| 7 | Environment |
| 8 | Energy |
| 9 | Immigration |
| 10 | Transportation |
| 12 | Law and Crime |
| 13 | Social Welfare |
| 14 | Housing |
| 15 | Domestic Commerce |
| 16 | Defense |
| 17 | Technology |
| 18 | Foreign Trade |
| 19.1 | International Affairs |
| 19.2 | European Union |
| 20 | Government Operations |
| 23 | Culture |
| 98 | Non-thematic |
| 99 | Other |
## Model variations
There are several monolingual models for different countries, and a multilingual model. The multilingual model can be easily extended to other languages, country contexts, or time periods by fine-tuning it with minimal additional labeled texts.
## Intended uses & limitations
The main use of the model is for text classification of press releases from political parties. It may also be useful for other political texts.
The classification can then be used to measure which issues parties are discussing in their communication.
### How to use
This model can be used directly with a pipeline for text classification:
```python
>>> from transformers import pipeline
>>> tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}
>>> partypress = pipeline("text-classification", model = "cornelius/partypress-monolingual-ireland", tokenizer = "cornelius/partypress-monolingual-ireland", **tokenizer_kwargs)
>>> partypress("Your text here.")
```
### Limitations and bias
The model was trained with data from parties in Ireland. For use in other countries, the model may be further fine-tuned. Without further fine-tuning, the performance of the model may be lower.
The model may have biased predictions. We discuss some biases by country, party, and over time in the release paper for the PARTYPRESS database. For example, the performance is highest for press releases from Ireland (75%) and lowest for Poland (55%).
## Training data
The PARTYPRESS multilingual model was fine-tuned with about 3,000 press releases from parties in Ireland. The press releases were labeled by two expert human coders.
For the training data of the underlying model, please refer to [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co./distilbert-base-uncased-finetuned-sst-2-english)
## Training procedure
### Preprocessing
For the preprocessing, please refer to [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co./distilbert-base-uncased-finetuned-sst-2-english)
### Pretraining
For the pretraining, please refer to [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co./distilbert-base-uncased-finetuned-sst-2-english)
### Fine-tuning
We fine-tuned the model using about 3,000 labeled press releases from political parties in Ireland.
#### Training Hyperparameters
The batch size for training was 12, for testing 2, with four epochs. All other hyperparameters were the standard from the transformers library.
#### Framework versions
- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
## Evaluation results
Fine-tuned on our downstream task, this model achieves the following results in a five-fold cross validation that are comparable to the performance of our expert human coders. Please refer to Erfort et al. (2023)
### BibTeX entry and citation info
```bibtex
@article{erfort_partypress_2023,
author = {Cornelius Erfort and
Lukas F. Stoetzer and
Heike Klüver},
title = {The PARTYPRESS Database: A new comparative database of parties’ press releases},
journal = {Research and Politics},
volume = {10},
number = {3},
year = {2023},
doi = {10.1177/20531680231183512},
URL = {https://doi.org/10.1177/20531680231183512}
}
```
Erfort, C., Stoetzer, L. F., & Klüver, H. (2023). The PARTYPRESS Database: A new comparative database of parties’ press releases. Research & Politics, 10(3). [https://doi.org/10.1177/20531680231183512](https://doi.org/10.1177/20531680231183512)
### Further resources
Github: [cornelius-erfort/partypress](https://github.com/cornelius-erfort/partypress)
Research and Politics Dataverse: [Replication Data for: The PARTYPRESS Database: A New Comparative Database of Parties’ Press Releases](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2FOINX7Q)
## Acknowledgements
Research for this contribution is part of the Cluster of Excellence "Contestations of the Liberal Script" (EXC 2055, Project-ID: 390715649), funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy. Cornelius Erfort is moreover grateful for generous funding provided by the DFG through the Research Training Group DYNAMICS (GRK 2458/1).
## Contact
Cornelius Erfort
Humboldt-Universität zu Berlin
[corneliuserfort.de](corneliuserfort.de)
|