File size: 1,557 Bytes
330d92f 356ab9f 330d92f 41032e7 76f813b 9fb8739 76f813b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: mit
datasets:
- microsoft/cats_vs_dogs
---
# Report Issue
If you encounter any problems with downloading or using the model, please report the issue by creating one at the following GitHub repository: https://github.com/parneetsingh022/dog-cat-classification.git
# Demo
https://huggingface.co./spaces/parneetsingh022/cat-vs-dog
# Loading and using the model.
In order to download and use the model follow these steps:
1. Clone this reposetory:
```
git clone https://github.com/parneetsingh022/dog-cat-classification.git
```
2. Download transformers liberary
```
pip install transformers
```
3.
After installation, you can utilize the model in other scripts outside of this directory `custom_classifier` as described below:
Required Imports:
```python
import torch
from PIL import Image
from torchvision import transforms
from custom_classifier.configuration import CustomModelConfig
from custom_classifier.model import CustomClassifier
```
Loading the model:
```python
model_name = "parneetsingh022/dog-cat-classification"
config = CustomModelConfig.from_pretrained(model_name)
model = CustomClassifier.from_pretrained(model_name, config=config)
```
Pridicting probability of individual class:
```python
# Load an example image
image_path = "dog.jpeg"
outputs = model.predict(image_path)
print(outputs)
```
Output: {'cat': 0.003, 'dog': 0.997}
Getting class name instead of probabilities:
```python
# Load an example image
image_path = "dog_new.jpeg"
outputs = model.predict(image_path, get_class=True)
print(output)
```
Output: 'dog' |