--- language: - te license: apache-2.0 tags: - whisper-event - generated_from_trainer metrics: - wer model-index: - name: Whisper Small Te - Bharat Ramanathan results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: te_in split: test metrics: - type: wer value: 30.26 name: WER --- # Whisper Small Te - Bharat Ramanathan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1863 - Wer: 31.6456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1637 | 0.1 | 500 | 0.2092 | 42.9406 | | 0.1459 | 0.2 | 1000 | 0.2025 | 35.9299 | | 0.1348 | 0.3 | 1500 | 0.1990 | 35.4917 | | 0.1309 | 0.4 | 2000 | 0.1974 | 33.7390 | | 0.1253 | 0.5 | 2500 | 0.1974 | 34.0312 | | 0.1209 | 0.6 | 3000 | 0.1909 | 32.4732 | | 0.1139 | 1.05 | 3500 | 0.1899 | 31.7916 | | 0.1043 | 1.15 | 4000 | 0.1868 | 31.6456 | | 0.0996 | 1.25 | 4500 | 0.1874 | 31.6943 | | 0.1002 | 1.35 | 5000 | 0.1863 | 31.6456 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2