--- language: - kn license: apache-2.0 tags: - whisper-event - generated_from_trainer metrics: - wer model-index: - name: Whisper Small Kn - Bharat Ramanathan results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: kn_in split: test metrics: - type: wer value: 25.54 name: WER --- # Whisper Small Kn - Bharat Ramanathan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1398 - Wer: 23.8167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4126 | 0.1 | 500 | 2.2797 | 127.2639 | | 0.2099 | 0.1 | 1000 | 0.1774 | 28.2494 | | 0.1736 | 0.2 | 1500 | 0.1565 | 27.5733 | | 0.1506 | 0.3 | 2000 | 0.1514 | 26.0331 | | 0.1373 | 0.4 | 2500 | 0.1494 | 24.4177 | | 0.1298 | 0.5 | 3000 | 0.1456 | 25.0563 | | 0.1198 | 1.06 | 3500 | 0.1436 | 24.4177 | | 0.1102 | 0.1 | 4000 | 0.1452 | 24.2675 | | 0.1097 | 0.2 | 4500 | 0.1402 | 24.3050 | | 0.105 | 0.3 | 5000 | 0.1398 | 23.8167 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2