--- language: - te license: apache-2.0 tags: - whisper-event - generated_from_trainer metrics: - wer model-index: - name: Whisper Base Te - Bharat Ramanathan results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: te_in split: test metrics: - type: wer value: 39.09 name: WER --- # Whisper Base Te - Bharat Ramanathan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2455 - Wer: 42.6485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 96 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6341 | 0.1 | 500 | 0.3894 | 60.7108 | | 0.349 | 0.2 | 1000 | 0.3081 | 52.0935 | | 0.2792 | 0.3 | 1500 | 0.2874 | 49.7079 | | 0.2433 | 0.4 | 2000 | 0.2720 | 47.5657 | | 0.2224 | 1.06 | 2500 | 0.2632 | 45.2288 | | 0.2058 | 1.16 | 3000 | 0.2529 | 44.3038 | | 0.1944 | 1.26 | 3500 | 0.2519 | 44.5959 | | 0.1869 | 1.36 | 4000 | 0.2475 | 43.7196 | | 0.1811 | 2.03 | 4500 | 0.2451 | 43.3301 | | 0.1775 | 2.13 | 5000 | 0.2455 | 42.6485 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2