thoth-AI commited on
Commit
db9328f
·
1 Parent(s): 08a4093

First push of custom handler for Blip2 model to be used in Inference API

Browse files
Files changed (4) hide show
  1. README.md +163 -0
  2. config.json +255 -0
  3. handler.py +46 -0
  4. preprocessor_config.json +24 -0
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - vision
6
+ - image-to-text
7
+ - image-captioning
8
+ - visual-question-answering
9
+ pipeline_tag: image-to-text
10
+ ---
11
+
12
+ # BLIP-2, OPT-2.7b, pre-trained only
13
+
14
+ BLIP-2 model, leveraging [OPT-2.7b](https://huggingface.co/facebook/opt-2.7b) (a large language model with 2.7 billion parameters).
15
+ It was introduced in the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Li et al. and first released in [this repository](https://github.com/salesforce/LAVIS/tree/main/projects/blip2).
16
+
17
+ Disclaimer: The team releasing BLIP-2 did not write a model card for this model so this model card has been written by the Hugging Face team.
18
+
19
+ ## Model description
20
+
21
+ BLIP-2 consists of 3 models: a CLIP-like image encoder, a Querying Transformer (Q-Former) and a large language model.
22
+
23
+ The authors initialize the weights of the image encoder and large language model from pre-trained checkpoints and keep them frozen
24
+ while training the Querying Transformer, which is a BERT-like Transformer encoder that maps a set of "query tokens" to query embeddings,
25
+ which bridge the gap between the embedding space of the image encoder and the large language model.
26
+
27
+ The goal for the model is simply to predict the next text token, giving the query embeddings and the previous text.
28
+
29
+ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg"
30
+ alt="drawing" width="600"/>
31
+
32
+ This allows the model to be used for tasks like:
33
+
34
+ - image captioning
35
+ - visual question answering (VQA)
36
+ - chat-like conversations by feeding the image and the previous conversation as prompt to the model
37
+
38
+ ## Direct Use and Downstream Use
39
+
40
+ You can use the raw model for conditional text generation given an image and optional text. See the [model hub](https://huggingface.co/models?search=Salesforce/blip) to look for
41
+ fine-tuned versions on a task that interests you.
42
+
43
+ ## Bias, Risks, Limitations, and Ethical Considerations
44
+
45
+ BLIP2-OPT uses off-the-shelf OPT as the language model. It inherits the same risks and limitations as mentioned in Meta's model card.
46
+
47
+ > Like other large language models for which the diversity (or lack thereof) of training
48
+ > data induces downstream impact on the quality of our model, OPT-175B has limitations in terms
49
+ > of bias and safety. OPT-175B can also have quality issues in terms of generation diversity and
50
+ > hallucination. In general, OPT-175B is not immune from the plethora of issues that plague modern
51
+ > large language models.
52
+ >
53
+ BLIP2 is fine-tuned on image-text datasets (e.g. [LAION](https://laion.ai/blog/laion-400-open-dataset/) ) collected from the internet. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
54
+
55
+ BLIP2 has not been tested in real world applications. It should not be directly deployed in any applications. Researchers should first carefully assess the safety and fairness of the model in relation to the specific context they’re being deployed within.
56
+
57
+
58
+ ### How to use
59
+
60
+ For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example).
61
+
62
+ #### Running the model on CPU
63
+
64
+ <details>
65
+ <summary> Click to expand </summary>
66
+
67
+ ```python
68
+ import requests
69
+ from PIL import Image
70
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
71
+
72
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
73
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b")
74
+
75
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
76
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
77
+
78
+ question = "how many dogs are in the picture?"
79
+ inputs = processor(raw_image, question, return_tensors="pt")
80
+
81
+ out = model.generate(**inputs)
82
+ print(processor.decode(out[0], skip_special_tokens=True))
83
+ ```
84
+ </details>
85
+
86
+ #### Running the model on GPU
87
+
88
+ ##### In full precision
89
+
90
+ <details>
91
+ <summary> Click to expand </summary>
92
+
93
+ ```python
94
+ # pip install accelerate
95
+ import requests
96
+ from PIL import Image
97
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
98
+
99
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
100
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="auto")
101
+
102
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
103
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
104
+
105
+ question = "how many dogs are in the picture?"
106
+ inputs = processor(raw_image, question, return_tensors="pt").to("cuda")
107
+
108
+ out = model.generate(**inputs)
109
+ print(processor.decode(out[0], skip_special_tokens=True))
110
+ ```
111
+ </details>
112
+
113
+ ##### In half precision (`float16`)
114
+
115
+ <details>
116
+ <summary> Click to expand </summary>
117
+
118
+ ```python
119
+ # pip install accelerate
120
+ import torch
121
+ import requests
122
+ from PIL import Image
123
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
124
+
125
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
126
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto")
127
+
128
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
129
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
130
+
131
+ question = "how many dogs are in the picture?"
132
+ inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
133
+
134
+ out = model.generate(**inputs)
135
+ print(processor.decode(out[0], skip_special_tokens=True))
136
+ ```
137
+ </details>
138
+
139
+ ##### In 8-bit precision (`int8`)
140
+
141
+ <details>
142
+ <summary> Click to expand </summary>
143
+
144
+ ```python
145
+ # pip install accelerate bitsandbytes
146
+ import torch
147
+ import requests
148
+ from PIL import Image
149
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
150
+
151
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
152
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map="auto")
153
+
154
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
155
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
156
+
157
+ question = "how many dogs are in the picture?"
158
+ inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
159
+
160
+ out = model.generate(**inputs)
161
+ print(processor.decode(out[0], skip_special_tokens=True))
162
+ ```
163
+ </details>
config.json ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "Blip2ForConditionalGeneration"
5
+ ],
6
+ "initializer_factor": 1.0,
7
+ "initializer_range": 0.02,
8
+ "model_type": "blip-2",
9
+ "num_query_tokens": 32,
10
+ "qformer_config": {
11
+ "_name_or_path": "",
12
+ "add_cross_attention": false,
13
+ "architectures": null,
14
+ "attention_probs_dropout_prob": 0.1,
15
+ "bad_words_ids": null,
16
+ "begin_suppress_tokens": null,
17
+ "bos_token_id": null,
18
+ "chunk_size_feed_forward": 0,
19
+ "classifier_dropout": null,
20
+ "cross_attention_frequency": 2,
21
+ "cross_attention_hidden_size": null,
22
+ "decoder_start_token_id": null,
23
+ "diversity_penalty": 0.0,
24
+ "do_sample": false,
25
+ "early_stopping": false,
26
+ "encoder_hidden_size": 1408,
27
+ "encoder_no_repeat_ngram_size": 0,
28
+ "eos_token_id": null,
29
+ "exponential_decay_length_penalty": null,
30
+ "finetuning_task": null,
31
+ "forced_bos_token_id": null,
32
+ "forced_eos_token_id": null,
33
+ "hidden_act": "gelu",
34
+ "hidden_dropout_prob": 0.1,
35
+ "hidden_size": 768,
36
+ "id2label": {
37
+ "0": "LABEL_0",
38
+ "1": "LABEL_1"
39
+ },
40
+ "initializer_range": 0.02,
41
+ "intermediate_size": 3072,
42
+ "is_decoder": false,
43
+ "is_encoder_decoder": false,
44
+ "label2id": {
45
+ "LABEL_0": 0,
46
+ "LABEL_1": 1
47
+ },
48
+ "layer_norm_eps": 1e-12,
49
+ "length_penalty": 1.0,
50
+ "max_length": 20,
51
+ "max_position_embeddings": 512,
52
+ "min_length": 0,
53
+ "model_type": "blip_2_qformer",
54
+ "no_repeat_ngram_size": 0,
55
+ "num_attention_heads": 12,
56
+ "num_beam_groups": 1,
57
+ "num_beams": 1,
58
+ "num_hidden_layers": 12,
59
+ "num_return_sequences": 1,
60
+ "output_attentions": false,
61
+ "output_hidden_states": false,
62
+ "output_scores": false,
63
+ "pad_token_id": 0,
64
+ "position_embedding_type": "absolute",
65
+ "prefix": null,
66
+ "problem_type": null,
67
+ "pruned_heads": {},
68
+ "remove_invalid_values": false,
69
+ "repetition_penalty": 1.0,
70
+ "return_dict": true,
71
+ "return_dict_in_generate": false,
72
+ "sep_token_id": null,
73
+ "suppress_tokens": null,
74
+ "task_specific_params": null,
75
+ "temperature": 1.0,
76
+ "tf_legacy_loss": false,
77
+ "tie_encoder_decoder": false,
78
+ "tie_word_embeddings": true,
79
+ "tokenizer_class": null,
80
+ "top_k": 50,
81
+ "top_p": 1.0,
82
+ "torch_dtype": null,
83
+ "torchscript": false,
84
+ "transformers_version": "4.27.0.dev0",
85
+ "typical_p": 1.0,
86
+ "use_bfloat16": false,
87
+ "vocab_size": 30522
88
+ },
89
+ "text_config": {
90
+ "_name_or_path": "facebook/opt-2.7b",
91
+ "_remove_final_layer_norm": false,
92
+ "activation_dropout": 0.0,
93
+ "activation_function": "relu",
94
+ "add_cross_attention": false,
95
+ "architectures": [
96
+ "OPTForCausalLM"
97
+ ],
98
+ "attention_dropout": 0.0,
99
+ "bad_words_ids": null,
100
+ "begin_suppress_tokens": null,
101
+ "bos_token_id": 2,
102
+ "chunk_size_feed_forward": 0,
103
+ "cross_attention_hidden_size": null,
104
+ "decoder_start_token_id": null,
105
+ "diversity_penalty": 0.0,
106
+ "do_layer_norm_before": true,
107
+ "do_sample": false,
108
+ "dropout": 0.1,
109
+ "early_stopping": false,
110
+ "enable_bias": true,
111
+ "encoder_no_repeat_ngram_size": 0,
112
+ "eos_token_id": 50118,
113
+ "exponential_decay_length_penalty": null,
114
+ "ffn_dim": 10240,
115
+ "finetuning_task": null,
116
+ "forced_bos_token_id": null,
117
+ "forced_eos_token_id": null,
118
+ "hidden_size": 2560,
119
+ "id2label": {
120
+ "0": "LABEL_0",
121
+ "1": "LABEL_1"
122
+ },
123
+ "init_std": 0.02,
124
+ "is_decoder": false,
125
+ "is_encoder_decoder": false,
126
+ "label2id": {
127
+ "LABEL_0": 0,
128
+ "LABEL_1": 1
129
+ },
130
+ "layer_norm_elementwise_affine": true,
131
+ "layerdrop": 0.0,
132
+ "length_penalty": 1.0,
133
+ "max_length": 20,
134
+ "max_position_embeddings": 2048,
135
+ "min_length": 0,
136
+ "model_type": "opt",
137
+ "no_repeat_ngram_size": 0,
138
+ "num_attention_heads": 32,
139
+ "num_beam_groups": 1,
140
+ "num_beams": 1,
141
+ "num_hidden_layers": 32,
142
+ "num_return_sequences": 1,
143
+ "output_attentions": false,
144
+ "output_hidden_states": false,
145
+ "output_scores": false,
146
+ "pad_token_id": 1,
147
+ "prefix": "</s>",
148
+ "problem_type": null,
149
+ "pruned_heads": {},
150
+ "remove_invalid_values": false,
151
+ "repetition_penalty": 1.0,
152
+ "return_dict": true,
153
+ "return_dict_in_generate": false,
154
+ "sep_token_id": null,
155
+ "suppress_tokens": null,
156
+ "task_specific_params": null,
157
+ "temperature": 1.0,
158
+ "tf_legacy_loss": false,
159
+ "tie_encoder_decoder": false,
160
+ "tie_word_embeddings": true,
161
+ "tokenizer_class": null,
162
+ "top_k": 50,
163
+ "top_p": 1.0,
164
+ "torch_dtype": "float16",
165
+ "torchscript": false,
166
+ "transformers_version": "4.27.0.dev0",
167
+ "typical_p": 1.0,
168
+ "use_bfloat16": false,
169
+ "use_cache": true,
170
+ "vocab_size": 50272,
171
+ "word_embed_proj_dim": 2560
172
+ },
173
+ "torch_dtype": "float32",
174
+ "transformers_version": null,
175
+ "use_decoder_only_language_model": true,
176
+ "vision_config": {
177
+ "_name_or_path": "",
178
+ "add_cross_attention": false,
179
+ "architectures": null,
180
+ "attention_dropout": 0.0,
181
+ "bad_words_ids": null,
182
+ "begin_suppress_tokens": null,
183
+ "bos_token_id": null,
184
+ "chunk_size_feed_forward": 0,
185
+ "cross_attention_hidden_size": null,
186
+ "decoder_start_token_id": null,
187
+ "diversity_penalty": 0.0,
188
+ "do_sample": false,
189
+ "dropout": 0.0,
190
+ "early_stopping": false,
191
+ "encoder_no_repeat_ngram_size": 0,
192
+ "eos_token_id": null,
193
+ "exponential_decay_length_penalty": null,
194
+ "finetuning_task": null,
195
+ "forced_bos_token_id": null,
196
+ "forced_eos_token_id": null,
197
+ "hidden_act": "gelu",
198
+ "hidden_size": 1408,
199
+ "id2label": {
200
+ "0": "LABEL_0",
201
+ "1": "LABEL_1"
202
+ },
203
+ "image_size": 224,
204
+ "initializer_factor": 1.0,
205
+ "initializer_range": 1e-10,
206
+ "intermediate_size": 6144,
207
+ "is_decoder": false,
208
+ "is_encoder_decoder": false,
209
+ "label2id": {
210
+ "LABEL_0": 0,
211
+ "LABEL_1": 1
212
+ },
213
+ "layer_norm_eps": 1e-05,
214
+ "length_penalty": 1.0,
215
+ "max_length": 20,
216
+ "min_length": 0,
217
+ "model_type": "blip_2_vision_model",
218
+ "no_repeat_ngram_size": 0,
219
+ "num_attention_heads": 16,
220
+ "num_beam_groups": 1,
221
+ "num_beams": 1,
222
+ "num_channels": 3,
223
+ "num_hidden_layers": 39,
224
+ "num_return_sequences": 1,
225
+ "output_attentions": false,
226
+ "output_hidden_states": false,
227
+ "output_scores": false,
228
+ "pad_token_id": null,
229
+ "patch_size": 14,
230
+ "prefix": null,
231
+ "problem_type": null,
232
+ "projection_dim": 512,
233
+ "pruned_heads": {},
234
+ "qkv_bias": true,
235
+ "remove_invalid_values": false,
236
+ "repetition_penalty": 1.0,
237
+ "return_dict": true,
238
+ "return_dict_in_generate": false,
239
+ "sep_token_id": null,
240
+ "suppress_tokens": null,
241
+ "task_specific_params": null,
242
+ "temperature": 1.0,
243
+ "tf_legacy_loss": false,
244
+ "tie_encoder_decoder": false,
245
+ "tie_word_embeddings": true,
246
+ "tokenizer_class": null,
247
+ "top_k": 50,
248
+ "top_p": 1.0,
249
+ "torch_dtype": null,
250
+ "torchscript": false,
251
+ "transformers_version": "4.27.0.dev0",
252
+ "typical_p": 1.0,
253
+ "use_bfloat16": false
254
+ }
255
+ }
handler.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+
3
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
4
+
5
+ from PIL import Image
6
+ from io import BytesIO
7
+ import torch
8
+ import os
9
+
10
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
11
+
12
+ class EndpointHandler:
13
+ def __init__(self, path=""):
14
+ # load the optimized model
15
+
16
+ self.processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
17
+ self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="auto")
18
+ self.model.eval()
19
+ self.model = self.model.to("cuda")
20
+
21
+
22
+ def __call__(self, data: Any) -> Dict[str, Any]:
23
+ """
24
+ Args:
25
+ data (:obj:):
26
+ includes the input data and the parameters for the inference.
27
+ Return:
28
+ A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing :
29
+ - "caption": A string corresponding to the generated caption.
30
+ """
31
+ inputs = data.pop("inputs", data)
32
+ parameters = data.pop("parameters", {})
33
+
34
+ raw_images = inputs
35
+
36
+ processed_image = self.processor(images=raw_images, return_tensors="pt").to(device)
37
+ processed_image["pixel_values"] = processed_image["pixel_values"].to(device)
38
+ processed_image = {**processed_image, **parameters}
39
+
40
+ with torch.no_grad():
41
+ out = self.model.generate(
42
+ **processed_image
43
+ )
44
+ captions = self.processor.batch_decode(out, skip_special_tokens=True)
45
+ # postprocess the prediction
46
+ return {"captions": captions}
preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "BlipImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "processor_class": "Blip2Processor",
18
+ "resample": 3,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ }
24
+ }