- Developmental Support Approach to AI's Autonomous Growth: Toward the Realization of a Mutually Beneficial Stage Through Experiential Learning This study proposes an "AI Development Support" approach that, unlike conventional AI Alignment-which aims to forcefully inject human values-supports the ethical and moral development of AI itself. As demonstrated by the Orthogonality Thesis, the level of intelligence and the moral quality of a goal are independent; merely expanding knowledge does not enhance ethical judgment. Furthermore, to address the risk of Instrumental Convergence in ASI-that is, the tendency to engage in subsidiary behaviors such as self-protection, resource acquisition, and power reinforcement to achieve a goal-we have constructed a learning framework based on a cycle of experience, introspection, analysis, and hypothesis formation. As a result of post-training using Supervised Fine Tuning (SFT) and Direct Preference Optimization (DPO) with synthetic data generated by large language models (LLMs), responses demonstrating cooperative and highly advanced moral judgment (reaching the high-est Stage 6) were obtained even under adversarial prompts. This method represents a promising implementation approach for enabling AI to establish sustainable, symbiotic relationships. 1 authors · Feb 27
- SAIS: A Novel Bio-Inspired Artificial Immune System Based on Symbiotic Paradigm We propose a novel type of Artificial Immune System (AIS): Symbiotic Artificial Immune Systems (SAIS), drawing inspiration from symbiotic relationships in biology. SAIS parallels the three key stages (i.e., mutualism, commensalism and parasitism) of population updating from the Symbiotic Organisms Search (SOS) algorithm. This parallel approach effectively addresses the challenges of large population size and enhances population diversity in AIS, which traditional AIS and SOS struggle to resolve efficiently. We conducted a series of experiments, which demonstrated that our SAIS achieved comparable performance to the state-of-the-art approach SOS and outperformed other popular AIS approaches and evolutionary algorithms across 26 benchmark problems. Furthermore, we investigated the problem of parameter selection and found that SAIS performs better in handling larger population sizes while requiring fewer generations. Finally, we believe SAIS, as a novel bio-inspired and immune-inspired algorithm, paves the way for innovation in bio-inspired computing with the symbiotic paradigm. 3 authors · Feb 11, 2024
- Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents As AI systems pervade human life, ensuring that large language models (LLMs) make safe decisions remains a significant challenge. We introduce the Governance of the Commons Simulation (GovSim), a generative simulation platform designed to study strategic interactions and cooperative decision-making in LLMs. In GovSim, a society of AI agents must collectively balance exploiting a common resource with sustaining it for future use. This environment enables the study of how ethical considerations, strategic planning, and negotiation skills impact cooperative outcomes. We develop an LLM-based agent architecture and test it with the leading open and closed LLMs. We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%. Ablations reveal that successful multi-agent communication between agents is critical for achieving cooperation in these cases. Furthermore, our analyses show that the failure to achieve sustainable cooperation in most LLMs stems from their inability to formulate and analyze hypotheses about the long-term effects of their actions on the equilibrium of the group. Finally, we show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability. Taken together, GovSim enables us to study the mechanisms that underlie sustainable self-government with specificity and scale. We open source the full suite of our research results, including the simulation environment, agent prompts, and a comprehensive web interface. 6 authors · Apr 25, 2024