Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDo Stochastic Parrots have Feelings Too? Improving Neural Detection of Synthetic Text via Emotion Recognition
Recent developments in generative AI have shone a spotlight on high-performance synthetic text generation technologies. The now wide availability and ease of use of such models highlights the urgent need to provide equally powerful technologies capable of identifying synthetic text. With this in mind, we draw inspiration from psychological studies which suggest that people can be driven by emotion and encode emotion in the text they compose. We hypothesize that pretrained language models (PLMs) have an affective deficit because they lack such an emotional driver when generating text and consequently may generate synthetic text which has affective incoherence i.e. lacking the kind of emotional coherence present in human-authored text. We subsequently develop an emotionally aware detector by fine-tuning a PLM on emotion. Experiment results indicate that our emotionally-aware detector achieves improvements across a range of synthetic text generators, various sized models, datasets, and domains. Finally, we compare our emotionally-aware synthetic text detector to ChatGPT in the task of identification of its own output and show substantial gains, reinforcing the potential of emotion as a signal to identify synthetic text. Code, models, and datasets are available at https: //github.com/alanagiasi/emoPLMsynth
Sensing technologies and machine learning methods for emotion recognition in autism: Systematic review
Background: Human Emotion Recognition (HER) has been a popular field of study in the past years. Despite the great progresses made so far, relatively little attention has been paid to the use of HER in autism. People with autism are known to face problems with daily social communication and the prototypical interpretation of emotional responses, which are most frequently exerted via facial expressions. This poses significant practical challenges to the application of regular HER systems, which are normally developed for and by neurotypical people. Objective: This study reviews the literature on the use of HER systems in autism, particularly with respect to sensing technologies and machine learning methods, as to identify existing barriers and possible future directions. Methods: We conducted a systematic review of articles published between January 2011 and June 2023 according to the 2020 PRISMA guidelines. Manuscripts were identified through searching Web of Science and Scopus databases. Manuscripts were included when related to emotion recognition, used sensors and machine learning techniques, and involved children with autism, young, or adults. Results: The search yielded 346 articles. A total of 65 publications met the eligibility criteria and were included in the review. Conclusions: Studies predominantly used facial expression techniques as the emotion recognition method. Consequently, video cameras were the most widely used devices across studies, although a growing trend in the use of physiological sensors was observed lately. Happiness, sadness, anger, fear, disgust, and surprise were most frequently addressed. Classical supervised machine learning techniques were primarily used at the expense of unsupervised approaches or more recent deep learning models.
Emotion Recognition among Couples: A Survey
Couples' relationships affect the physical health and emotional well-being of partners. Automatically recognizing each partner's emotions could give a better understanding of their individual emotional well-being, enable interventions and provide clinical benefits. In the paper, we summarize and synthesize works that have focused on developing and evaluating systems to automatically recognize the emotions of each partner based on couples' interaction or conversation contexts. We identified 28 articles from IEEE, ACM, Web of Science, and Google Scholar that were published between 2010 and 2021. We detail the datasets, features, algorithms, evaluation, and results of each work as well as present main themes. We also discuss current challenges, research gaps and propose future research directions. In summary, most works have used audio data collected from the lab with annotations done by external experts and used supervised machine learning approaches for binary classification of positive and negative affect. Performance results leave room for improvement with significant research gaps such as no recognition using data from daily life. This survey will enable new researchers to get an overview of this field and eventually enable the development of emotion recognition systems to inform interventions to improve the emotional well-being of couples.
Automatically Select Emotion for Response via Personality-affected Emotion Transition
To provide consistent emotional interaction with users, dialog systems should be capable to automatically select appropriate emotions for responses like humans. However, most existing works focus on rendering specified emotions in responses or empathetically respond to the emotion of users, yet the individual difference in emotion expression is overlooked. This may lead to inconsistent emotional expressions and disinterest users. To tackle this issue, we propose to equip the dialog system with personality and enable it to automatically select emotions in responses by simulating the emotion transition of humans in conversation. In detail, the emotion of the dialog system is transitioned from its preceding emotion in context. The transition is triggered by the preceding dialog context and affected by the specified personality trait. To achieve this, we first model the emotion transition in the dialog system as the variation between the preceding emotion and the response emotion in the Valence-Arousal-Dominance (VAD) emotion space. Then, we design neural networks to encode the preceding dialog context and the specified personality traits to compose the variation. Finally, the emotion for response is selected from the sum of the preceding emotion and the variation. We construct a dialog dataset with emotion and personality labels and conduct emotion prediction tasks for evaluation. Experimental results validate the effectiveness of the personality-affected emotion transition.
MISC: A MIxed Strategy-Aware Model Integrating COMET for Emotional Support Conversation
Applying existing methods to emotional support conversation -- which provides valuable assistance to people who are in need -- has two major limitations: (a) they generally employ a conversation-level emotion label, which is too coarse-grained to capture user's instant mental state; (b) most of them focus on expressing empathy in the response(s) rather than gradually reducing user's distress. To address the problems, we propose a novel model MISC, which firstly infers the user's fine-grained emotional status, and then responds skillfully using a mixture of strategy. Experimental results on the benchmark dataset demonstrate the effectiveness of our method and reveal the benefits of fine-grained emotion understanding as well as mixed-up strategy modeling. Our code and data could be found in https://github.com/morecry/MISC.
Can Large Language Models be Good Emotional Supporter? Mitigating Preference Bias on Emotional Support Conversation
Emotional Support Conversation (ESC) is a task aimed at alleviating individuals' emotional distress through daily conversation. Given its inherent complexity and non-intuitive nature, ESConv dataset incorporates support strategies to facilitate the generation of appropriate responses. Recently, despite the remarkable conversational ability of large language models (LLMs), previous studies have suggested that they often struggle with providing useful emotional support. Hence, this work initially analyzes the results of LLMs on ESConv, revealing challenges in selecting the correct strategy and a notable preference for a specific strategy. Motivated by these, we explore the impact of the inherent preference in LLMs on providing emotional support, and consequently, we observe that exhibiting high preference for specific strategies hinders effective emotional support, aggravating its robustness in predicting the appropriate strategy. Moreover, we conduct a methodological study to offer insights into the necessary approaches for LLMs to serve as proficient emotional supporters. Our findings emphasize that (1) low preference for specific strategies hinders the progress of emotional support, (2) external assistance helps reduce preference bias, and (3) existing LLMs alone cannot become good emotional supporters. These insights suggest promising avenues for future research to enhance the emotional intelligence of LLMs.
Large Language Models Understand and Can be Enhanced by Emotional Stimuli
Emotional intelligence significantly impacts our daily behaviors and interactions. Although Large Language Models (LLMs) are increasingly viewed as a stride toward artificial general intelligence, exhibiting impressive performance in numerous tasks, it is still uncertain if LLMs can genuinely grasp psychological emotional stimuli. Understanding and responding to emotional cues gives humans a distinct advantage in problem-solving. In this paper, we take the first step towards exploring the ability of LLMs to understand emotional stimuli. To this end, we first conduct automatic experiments on 45 tasks using various LLMs, including Flan-T5-Large, Vicuna, Llama 2, BLOOM, ChatGPT, and GPT-4. Our tasks span deterministic and generative applications that represent comprehensive evaluation scenarios. Our automatic experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts (which we call "EmotionPrompt" that combines the original prompt with emotional stimuli), e.g., 8.00% relative performance improvement in Instruction Induction and 115% in BIG-Bench. In addition to those deterministic tasks that can be automatically evaluated using existing metrics, we conducted a human study with 106 participants to assess the quality of generative tasks using both vanilla and emotional prompts. Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks (10.9% average improvement in terms of performance, truthfulness, and responsibility metrics). We provide an in-depth discussion regarding why EmotionPrompt works for LLMs and the factors that may influence its performance. We posit that EmotionPrompt heralds a novel avenue for exploring interdisciplinary knowledge for human-LLMs interaction.
TinyEmo: Scaling down Emotional Reasoning via Metric Projection
This paper introduces TinyEmo, a family of small multi-modal language models for emotional reasoning and classification. Our approach features: (1) a synthetic emotional instruct dataset for both pre-training and fine-tuning stages, (2) a Metric Projector that delegates classification from the language model allowing for more efficient training and inference, (3) a multi-modal large language model (MM-LLM) for emotional reasoning, and (4) a semi-automated framework for bias detection. TinyEmo is able to perform emotion classification and emotional reasoning, all while using substantially fewer parameters than comparable models. This efficiency allows us to freely incorporate more diverse emotional datasets, enabling strong performance on classification tasks, with our smallest model (700M parameters) outperforming larger state-of-the-art models based on general-purpose MM-LLMs with over 7B parameters. Additionally, the Metric Projector allows for interpretability and indirect bias detection in large models without additional training, offering an approach to understand and improve AI systems. We release code, models, and dataset at https://github.com/ggcr/TinyEmo
UniEmoX: Cross-modal Semantic-Guided Large-Scale Pretraining for Universal Scene Emotion Perception
Visual emotion analysis holds significant research value in both computer vision and psychology. However, existing methods for visual emotion analysis suffer from limited generalizability due to the ambiguity of emotion perception and the diversity of data scenarios. To tackle this issue, we introduce UniEmoX, a cross-modal semantic-guided large-scale pretraining framework. Inspired by psychological research emphasizing the inseparability of the emotional exploration process from the interaction between individuals and their environment, UniEmoX integrates scene-centric and person-centric low-level image spatial structural information, aiming to derive more nuanced and discriminative emotional representations. By exploiting the similarity between paired and unpaired image-text samples, UniEmoX distills rich semantic knowledge from the CLIP model to enhance emotional embedding representations more effectively. To the best of our knowledge, this is the first large-scale pretraining framework that integrates psychological theories with contemporary contrastive learning and masked image modeling techniques for emotion analysis across diverse scenarios. Additionally, we develop a visual emotional dataset titled Emo8. Emo8 samples cover a range of domains, including cartoon, natural, realistic, science fiction and advertising cover styles, covering nearly all common emotional scenes. Comprehensive experiments conducted on six benchmark datasets across two downstream tasks validate the effectiveness of UniEmoX. The source code is available at https://github.com/chincharles/u-emo.
Expressions Causing Differences in Emotion Recognition in Social Networking Service Documents
It is often difficult to correctly infer a writer's emotion from text exchanged online, and differences in recognition between writers and readers can be problematic. In this paper, we propose a new framework for detecting sentences that create differences in emotion recognition between the writer and the reader and for detecting the kinds of expressions that cause such differences. The proposed framework consists of a bidirectional encoder representations from transformers (BERT)-based detector that detects sentences causing differences in emotion recognition and an analysis that acquires expressions that characteristically appear in such sentences. The detector, based on a Japanese SNS-document dataset with emotion labels annotated by both the writer and three readers of the social networking service (SNS) documents, detected "hidden-anger sentences" with AUC = 0.772; these sentences gave rise to differences in the recognition of anger. Because SNS documents contain many sentences whose meaning is extremely difficult to interpret, by analyzing the sentences detected by this detector, we obtained several expressions that appear characteristically in hidden-anger sentences. The detected sentences and expressions do not convey anger explicitly, and it is difficult to infer the writer's anger, but if the implicit anger is pointed out, it becomes possible to guess why the writer is angry. Put into practical use, this framework would likely have the ability to mitigate problems based on misunderstandings.
Language-Specific Representation of Emotion-Concept Knowledge Causally Supports Emotion Inference
Understanding how language supports emotion inference remains a topic of debate in emotion science. The present study investigated whether language-derived emotion-concept knowledge would causally support emotion inference by manipulating the language-specific knowledge representations in large language models. Using the prompt technique, 14 attributes of emotion concepts were found to be represented by distinct artificial neuron populations. By manipulating these attribute-related neurons, the majority of the emotion inference tasks showed performance deterioration compared to random manipulations. The attribute-specific performance deterioration was related to the importance of different attributes in human mental space. Our findings provide causal evidence in support of a language-based mechanism for emotion inference and highlight the contributions of emotion-concept knowledge.
Improving speaker verification robustness with synthetic emotional utterances
A speaker verification (SV) system offers an authentication service designed to confirm whether a given speech sample originates from a specific speaker. This technology has paved the way for various personalized applications that cater to individual preferences. A noteworthy challenge faced by SV systems is their ability to perform consistently across a range of emotional spectra. Most existing models exhibit high error rates when dealing with emotional utterances compared to neutral ones. Consequently, this phenomenon often leads to missing out on speech of interest. This issue primarily stems from the limited availability of labeled emotional speech data, impeding the development of robust speaker representations that encompass diverse emotional states. To address this concern, we propose a novel approach employing the CycleGAN framework to serve as a data augmentation method. This technique synthesizes emotional speech segments for each specific speaker while preserving the unique vocal identity. Our experimental findings underscore the effectiveness of incorporating synthetic emotional data into the training process. The models trained using this augmented dataset consistently outperform the baseline models on the task of verifying speakers in emotional speech scenarios, reducing equal error rate by as much as 3.64% relative.
Explainable Multimodal Emotion Reasoning
Multimodal emotion recognition is an active research topic in artificial intelligence. Its primary objective is to integrate multi-modalities (such as acoustic, visual, and lexical clues) to identify human emotional states. Current works generally assume accurate emotion labels for benchmark datasets and focus on developing more effective architectures. But due to the inherent subjectivity of emotions, existing datasets often lack high annotation consistency, resulting in potentially inaccurate labels. Consequently, models built on these datasets may struggle to meet the demands of practical applications. To address this issue, it is crucial to enhance the reliability of emotion annotations. In this paper, we propose a novel task called ``Explainable Multimodal Emotion Reasoning (EMER)''. In contrast to previous works that primarily focus on predicting emotions, EMER takes a step further by providing explanations for these predictions. The prediction is considered correct as long as the reasoning process behind the predicted emotion is plausible. This paper presents our initial efforts on EMER, where we introduce a benchmark dataset, establish baseline models, and define evaluation metrics. Meanwhile, we observe the necessity of integrating multi-faceted capabilities to deal with EMER. Therefore, we propose the first multimodal large language model (LLM) in affective computing, called AffectGPT. We aim to tackle the long-standing challenge of label ambiguity and chart a path toward more reliable techniques. Furthermore, EMER offers an opportunity to evaluate the audio-video-text understanding capabilities of recent multimodal LLM. To facilitate further research, we make the code and data available at: https://github.com/zeroQiaoba/AffectGPT.
FEEL: A Framework for Evaluating Emotional Support Capability with Large Language Models
Emotional Support Conversation (ESC) is a typical dialogue that can effectively assist the user in mitigating emotional pressures. However, owing to the inherent subjectivity involved in analyzing emotions, current non-artificial methodologies face challenges in effectively appraising the emotional support capability. These metrics exhibit a low correlation with human judgments. Concurrently, manual evaluation methods extremely will cause high costs. To solve these problems, we propose a novel model FEEL (Framework for Evaluating Emotional Support Capability with Large Lan-guage Models), employing Large Language Models (LLMs) as evaluators to assess emotional support capabilities. The model meticulously considers various evaluative aspects of ESC to apply a more comprehensive and accurate evaluation method for ESC. Additionally, it employs a probability distribution approach for a more stable result and integrates an ensemble learning strategy, leveraging multiple LLMs with assigned weights to enhance evaluation accuracy. To appraise the performance of FEEL, we conduct extensive experiments on existing ESC model dialogues. Experimental results demonstrate our model exhibits a substantial enhancement in alignment with human evaluations compared to the baselines. Our source code is available at https://github.com/Ansisy/FEEL.
MIME: MIMicking Emotions for Empathetic Response Generation
Current approaches to empathetic response generation view the set of emotions expressed in the input text as a flat structure, where all the emotions are treated uniformly. We argue that empathetic responses often mimic the emotion of the user to a varying degree, depending on its positivity or negativity and content. We show that the consideration of this polarity-based emotion clusters and emotional mimicry results in improved empathy and contextual relevance of the response as compared to the state-of-the-art. Also, we introduce stochasticity into the emotion mixture that yields emotionally more varied empathetic responses than the previous work. We demonstrate the importance of these factors to empathetic response generation using both automatic- and human-based evaluations. The implementation of MIME is publicly available at https://github.com/declare-lab/MIME.
EMID: An Emotional Aligned Dataset in Audio-Visual Modality
In this paper, we propose Emotionally paired Music and Image Dataset (EMID), a novel dataset designed for the emotional matching of music and images, to facilitate auditory-visual cross-modal tasks such as generation and retrieval. Unlike existing approaches that primarily focus on semantic correlations or roughly divided emotional relations, EMID emphasizes the significance of emotional consistency between music and images using an advanced 13-dimension emotional model. By incorporating emotional alignment into the dataset, it aims to establish pairs that closely align with human perceptual understanding, thereby raising the performance of auditory-visual cross-modal tasks. We also design a supplemental module named EMI-Adapter to optimize existing cross-modal alignment methods. To validate the effectiveness of the EMID, we conduct a psychological experiment, which has demonstrated that considering the emotional relationship between the two modalities effectively improves the accuracy of matching in abstract perspective. This research lays the foundation for future cross-modal research in domains such as psychotherapy and contributes to advancing the understanding and utilization of emotions in cross-modal alignment. The EMID dataset is available at https://github.com/ecnu-aigc/EMID.
Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models
Empathetic response generation is increasingly significant in AI, necessitating nuanced emotional and cognitive understanding coupled with articulate response expression. Current large language models (LLMs) excel in response expression; however, they lack the ability to deeply understand emotional and cognitive nuances, particularly in pinpointing fine-grained emotions and their triggers. Conversely, small-scale empathetic models (SEMs) offer strength in fine-grained emotion detection and detailed emotion cause identification. To harness the complementary strengths of both LLMs and SEMs, we introduce a Hybrid Empathetic Framework (HEF). HEF regards SEMs as flexible plugins to improve LLM's nuanced emotional and cognitive understanding. Regarding emotional understanding, HEF implements a two-stage emotion prediction strategy, encouraging LLMs to prioritize primary emotions emphasized by SEMs, followed by other categories, substantially alleviates the difficulties for LLMs in fine-grained emotion detection. Regarding cognitive understanding, HEF employs an emotion cause perception strategy, prompting LLMs to focus on crucial emotion-eliciting words identified by SEMs, thus boosting LLMs' capabilities in identifying emotion causes. This collaborative approach enables LLMs to discern emotions more precisely and formulate empathetic responses. We validate HEF on the Empathetic-Dialogue dataset, and the findings indicate that our framework enhances the refined understanding of LLMs and their ability to convey empathetic responses.
Daisy-TTS: Simulating Wider Spectrum of Emotions via Prosody Embedding Decomposition
We often verbally express emotions in a multifaceted manner, they may vary in their intensities and may be expressed not just as a single but as a mixture of emotions. This wide spectrum of emotions is well-studied in the structural model of emotions, which represents variety of emotions as derivative products of primary emotions with varying degrees of intensity. In this paper, we propose an emotional text-to-speech design to simulate a wider spectrum of emotions grounded on the structural model. Our proposed design, Daisy-TTS, incorporates a prosody encoder to learn emotionally-separable prosody embedding as a proxy for emotion. This emotion representation allows the model to simulate: (1) Primary emotions, as learned from the training samples, (2) Secondary emotions, as a mixture of primary emotions, (3) Intensity-level, by scaling the emotion embedding, and (4) Emotions polarity, by negating the emotion embedding. Through a series of perceptual evaluations, Daisy-TTS demonstrated overall higher emotional speech naturalness and emotion perceiveability compared to the baseline.
Facial Expression Recognition using Squeeze and Excitation-powered Swin Transformers
The ability to recognize and interpret facial emotions is a critical component of human communication, as it allows individuals to understand and respond to emotions conveyed through facial expressions and vocal tones. The recognition of facial emotions is a complex cognitive process that involves the integration of visual and auditory information, as well as prior knowledge and social cues. It plays a crucial role in social interaction, affective processing, and empathy, and is an important aspect of many real-world applications, including human-computer interaction, virtual assistants, and mental health diagnosis and treatment. The development of accurate and efficient models for facial emotion recognition is therefore of great importance and has the potential to have a significant impact on various fields of study.The field of Facial Emotion Recognition (FER) is of great significance in the areas of computer vision and artificial intelligence, with vast commercial and academic potential in fields such as security, advertising, and entertainment. We propose a FER framework that employs Swin Vision Transformers (SwinT) and squeeze and excitation block (SE) to address vision tasks. The approach uses a transformer model with an attention mechanism, SE, and SAM to improve the efficiency of the model, as transformers often require a large amount of data. Our focus was to create an efficient FER model based on SwinT architecture that can recognize facial emotions using minimal data. We trained our model on a hybrid dataset and evaluated its performance on the AffectNet dataset, achieving an F1-score of 0.5420, which surpassed the winner of the Affective Behavior Analysis in the Wild (ABAW) Competition held at the European Conference on Computer Vision (ECCV) 2022~Kollias.
AI-Based Facial Emotion Recognition Solutions for Education: A Study of Teacher-User and Other Categories
Existing information on AI-based facial emotion recognition (FER) is not easily comprehensible by those outside the field of computer science, requiring cross-disciplinary effort to determine a categorisation framework that promotes the understanding of this technology, and its impact on users. Most proponents classify FER in terms of methodology, implementation and analysis; relatively few by its application in education; and none by its users. This paper is concerned primarily with (potential) teacher-users of FER tools for education. It proposes a three-part classification of these teachers, by orientation, condition and preference, based on a classical taxonomy of affective educational objectives, and related theories. It also compiles and organises the types of FER solutions found in or inferred from the literature into "technology" and "applications" categories, as a prerequisite for structuring the proposed "teacher-user" category. This work has implications for proponents', critics', and users' understanding of the relationship between teachers and FER.
ESCoT: Towards Interpretable Emotional Support Dialogue Systems
Understanding the reason for emotional support response is crucial for establishing connections between users and emotional support dialogue systems. Previous works mostly focus on generating better responses but ignore interpretability, which is extremely important for constructing reliable dialogue systems. To empower the system with better interpretability, we propose an emotional support response generation scheme, named Emotion-Focused and Strategy-Driven Chain-of-Thought (ESCoT), mimicking the process of identifying, understanding, and regulating emotions. Specially, we construct a new dataset with ESCoT in two steps: (1) Dialogue Generation where we first generate diverse conversation situations, then enhance dialogue generation using richer emotional support strategies based on these situations; (2) Chain Supplement where we focus on supplementing selected dialogues with elements such as emotion, stimuli, appraisal, and strategy reason, forming the manually verified chains. Additionally, we further develop a model to generate dialogue responses with better interpretability. We also conduct extensive experiments and human evaluations to validate the effectiveness of the proposed ESCoT and generated dialogue responses. Our data and code are available at https://github.com/TeigenZhang/ESCoT{https://github.com/TeigenZhang/ESCoT}.
CEM: Commonsense-aware Empathetic Response Generation
A key trait of daily conversations between individuals is the ability to express empathy towards others, and exploring ways to implement empathy is a crucial step towards human-like dialogue systems. Previous approaches on this topic mainly focus on detecting and utilizing the user's emotion for generating empathetic responses. However, since empathy includes both aspects of affection and cognition, we argue that in addition to identifying the user's emotion, cognitive understanding of the user's situation should also be considered. To this end, we propose a novel approach for empathetic response generation, which leverages commonsense to draw more information about the user's situation and uses this additional information to further enhance the empathy expression in generated responses. We evaluate our approach on EmpatheticDialogues, which is a widely-used benchmark dataset for empathetic response generation. Empirical results demonstrate that our approach outperforms the baseline models in both automatic and human evaluations and can generate more informative and empathetic responses.
Personalized Dynamic Music Emotion Recognition with Dual-Scale Attention-Based Meta-Learning
Dynamic Music Emotion Recognition (DMER) aims to predict the emotion of different moments in music, playing a crucial role in music information retrieval. The existing DMER methods struggle to capture long-term dependencies when dealing with sequence data, which limits their performance. Furthermore, these methods often overlook the influence of individual differences on emotion perception, even though everyone has their own personalized emotional perception in the real world. Motivated by these issues, we explore more effective sequence processing methods and introduce the Personalized DMER (PDMER) problem, which requires models to predict emotions that align with personalized perception. Specifically, we propose a Dual-Scale Attention-Based Meta-Learning (DSAML) method. This method fuses features from a dual-scale feature extractor and captures both short and long-term dependencies using a dual-scale attention transformer, improving the performance in traditional DMER. To achieve PDMER, we design a novel task construction strategy that divides tasks by annotators. Samples in a task are annotated by the same annotator, ensuring consistent perception. Leveraging this strategy alongside meta-learning, DSAML can predict personalized perception of emotions with just one personalized annotation sample. Our objective and subjective experiments demonstrate that our method can achieve state-of-the-art performance in both traditional DMER and PDMER.
Modeling Emotional Trajectories in Written Stories Utilizing Transformers and Weakly-Supervised Learning
Telling stories is an integral part of human communication which can evoke emotions and influence the affective states of the audience. Automatically modeling emotional trajectories in stories has thus attracted considerable scholarly interest. However, as most existing works have been limited to unsupervised dictionary-based approaches, there is no benchmark for this task. We address this gap by introducing continuous valence and arousal labels for an existing dataset of children's stories originally annotated with discrete emotion categories. We collect additional annotations for this data and map the categorical labels to the continuous valence and arousal space. For predicting the thus obtained emotionality signals, we fine-tune a DeBERTa model and improve upon this baseline via a weakly supervised learning approach. The best configuration achieves a Concordance Correlation Coefficient (CCC) of .8221 for valence and .7125 for arousal on the test set, demonstrating the efficacy of our proposed approach. A detailed analysis shows the extent to which the results vary depending on factors such as the author, the individual story, or the section within the story. In addition, we uncover the weaknesses of our approach by investigating examples that prove to be difficult to predict.
Emotion Recognition based on Psychological Components in Guided Narratives for Emotion Regulation
Emotion regulation is a crucial element in dealing with emotional events and has positive effects on mental health. This paper aims to provide a more comprehensive understanding of emotional events by introducing a new French corpus of emotional narratives collected using a questionnaire for emotion regulation. We follow the theoretical framework of the Component Process Model which considers emotions as dynamic processes composed of four interrelated components (behavior, feeling, thinking and territory). Each narrative is related to a discrete emotion and is structured based on all emotion components by the writers. We study the interaction of components and their impact on emotion classification with machine learning methods and pre-trained language models. Our results show that each component improves prediction performance, and that the best results are achieved by jointly considering all components. Our results also show the effectiveness of pre-trained language models in predicting discrete emotion from certain components, which reveal differences in how emotion components are expressed.
EmotiCrafter: Text-to-Emotional-Image Generation based on Valence-Arousal Model
Recent research shows that emotions can enhance users' cognition and influence information communication. While research on visual emotion analysis is extensive, limited work has been done on helping users generate emotionally rich image content. Existing work on emotional image generation relies on discrete emotion categories, making it challenging to capture complex and subtle emotional nuances accurately. Additionally, these methods struggle to control the specific content of generated images based on text prompts. In this work, we introduce the new task of continuous emotional image content generation (C-EICG) and present EmotiCrafter, an emotional image generation model that generates images based on text prompts and Valence-Arousal values. Specifically, we propose a novel emotion-embedding mapping network that embeds Valence-Arousal values into textual features, enabling the capture of specific emotions in alignment with intended input prompts. Additionally, we introduce a loss function to enhance emotion expression. The experimental results show that our method effectively generates images representing specific emotions with the desired content and outperforms existing techniques.
Disagreement as a way to study misinformation and its effects
Misinformation - false or misleading information - is considered a significant societal concern due to its associated "misinformation effects," such as political polarization, erosion of trust in institutions, problematic behavior, and public health challenges. However, the prevailing concept is misaligned with what is studied. While misinformation focuses on instances of information about factual matters, the broad spectrum of effects often manifests at a societal level and is shaped by a wide range of interdependent factors such as identity, values, opinions, epistemologies, and disagreements. Unsurprisingly, misinformation effects can occur without the prevalence of misinformation, and misinformation does not necessarily increase the effects studied. Here, we propose using disagreement - conflicting attitudes and beliefs between individuals and communities - as a way to study misinformation effects because it addresses the identified conceptual limitations of misinformation. Furthermore, unlike misinformation, disagreement does not require researchers to determine whether a given information is false or misleading. Thus, it can be studied and, more importantly, measured without the need to make a normative judgment about a given information, even when the specific topic is entirely removed, as we show in a longitudinal disagreement measurement. We demonstrate that disagreement, as a holistic concept, provides better explanations for the occurrence of misinformation effects, enhances precision in developing appropriate interventions, and offers a promising approach for evaluating them through quantification. Finally, we show how disagreement addresses current misinformation research questions and conclude with recommendations for research practice.
Natural Language Processing for Cognitive Analysis of Emotions
Emotion analysis in texts suffers from two major limitations: annotated gold-standard corpora are mostly small and homogeneous, and emotion identification is often simplified as a sentence-level classification problem. To address these issues, we introduce a new annotation scheme for exploring emotions and their causes, along with a new French dataset composed of autobiographical accounts of an emotional scene. The texts were collected by applying the Cognitive Analysis of Emotions developed by A. Finkel to help people improve on their emotion management. The method requires the manual analysis of an emotional event by a coach trained in Cognitive Analysis. We present a rule-based approach to automatically annotate emotions and their semantic roles (e.g. emotion causes) to facilitate the identification of relevant aspects by the coach. We investigate future directions for emotion analysis using graph structures.
Multitask Learning and Multistage Fusion for Dimensional Audiovisual Emotion Recognition
Due to its ability to accurately predict emotional state using multimodal features, audiovisual emotion recognition has recently gained more interest from researchers. This paper proposes two methods to predict emotional attributes from audio and visual data using a multitask learning and a fusion strategy. First, multitask learning is employed by adjusting three parameters for each attribute to improve the recognition rate. Second, a multistage fusion is proposed to combine results from various modalities' final prediction. Our approach used multitask learning, employed at unimodal and early fusion methods, shows improvement over single-task learning with an average CCC score of 0.431 compared to 0.297. A multistage method, employed at the late fusion approach, significantly improved the agreement score between true and predicted values on the development set of data (from [0.537, 0.565, 0.083] to [0.68, 0.656, 0.443]) for arousal, valence, and liking.
Modeling Empathetic Alignment in Conversation
Empathy requires perspective-taking: empathetic responses require a person to reason about what another has experienced and communicate that understanding in language. However, most NLP approaches to empathy do not explicitly model this alignment process. Here, we introduce a new approach to recognizing alignment in empathetic speech, grounded in Appraisal Theory. We introduce a new dataset of over 9.2K span-level annotations of different types of appraisals of a person's experience and over 3K empathetic alignments between a speaker's and observer's speech. Through computational experiments, we show that these appraisals and alignments can be accurately recognized. In experiments in over 9.2M Reddit conversations, we find that appraisals capture meaningful groupings of behavior but that most responses have minimal alignment. However, we find that mental health professionals engage with substantially more empathetic alignment.
Emotion-LLaMA: Multimodal Emotion Recognition and Reasoning with Instruction Tuning
Accurate emotion perception is crucial for various applications, including human-computer interaction, education, and counseling. However, traditional single-modality approaches often fail to capture the complexity of real-world emotional expressions, which are inherently multimodal. Moreover, existing Multimodal Large Language Models (MLLMs) face challenges in integrating audio and recognizing subtle facial micro-expressions. To address this, we introduce the MERR dataset, containing 28,618 coarse-grained and 4,487 fine-grained annotated samples across diverse emotional categories. This dataset enables models to learn from varied scenarios and generalize to real-world applications. Furthermore, we propose Emotion-LLaMA, a model that seamlessly integrates audio, visual, and textual inputs through emotion-specific encoders. By aligning features into a shared space and employing a modified LLaMA model with instruction tuning, Emotion-LLaMA significantly enhances both emotional recognition and reasoning capabilities. Extensive evaluations show Emotion-LLaMA outperforms other MLLMs, achieving top scores in Clue Overlap (7.83) and Label Overlap (6.25) on EMER, an F1 score of 0.9036 on MER2023-SEMI challenge, and the highest UAR (45.59) and WAR (59.37) in zero-shot evaluations on DFEW dataset.
Human-like Affective Cognition in Foundation Models
Understanding emotions is fundamental to human interaction and experience. Humans easily infer emotions from situations or facial expressions, situations from emotions, and do a variety of other affective cognition. How adept is modern AI at these inferences? We introduce an evaluation framework for testing affective cognition in foundation models. Starting from psychological theory, we generate 1,280 diverse scenarios exploring relationships between appraisals, emotions, expressions, and outcomes. We evaluate the abilities of foundation models (GPT-4, Claude-3, Gemini-1.5-Pro) and humans (N = 567) across carefully selected conditions. Our results show foundation models tend to agree with human intuitions, matching or exceeding interparticipant agreement. In some conditions, models are ``superhuman'' -- they better predict modal human judgements than the average human. All models benefit from chain-of-thought reasoning. This suggests foundation models have acquired a human-like understanding of emotions and their influence on beliefs and behavior.
Exploring speech style spaces with language models: Emotional TTS without emotion labels
Many frameworks for emotional text-to-speech (E-TTS) rely on human-annotated emotion labels that are often inaccurate and difficult to obtain. Learning emotional prosody implicitly presents a tough challenge due to the subjective nature of emotions. In this study, we propose a novel approach that leverages text awareness to acquire emotional styles without the need for explicit emotion labels or text prompts. We present TEMOTTS, a two-stage framework for E-TTS that is trained without emotion labels and is capable of inference without auxiliary inputs. Our proposed method performs knowledge transfer between the linguistic space learned by BERT and the emotional style space constructed by global style tokens. Our experimental results demonstrate the effectiveness of our proposed framework, showcasing improvements in emotional accuracy and naturalness. This is one of the first studies to leverage the emotional correlation between spoken content and expressive delivery for emotional TTS.
MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries?
Humans are prone to cognitive distortions -- biased thinking patterns that lead to exaggerated responses to specific stimuli, albeit in very different contexts. This paper demonstrates that advanced Multimodal Large Language Models (MLLMs) exhibit similar tendencies. While these models are designed to respond queries under safety mechanism, they sometimes reject harmless queries in the presence of certain visual stimuli, disregarding the benign nature of their contexts. As the initial step in investigating this behavior, we identify three types of stimuli that trigger the oversensitivity of existing MLLMs: Exaggerated Risk, Negated Harm, and Counterintuitive Interpretation. To systematically evaluate MLLMs' oversensitivity to these stimuli, we propose the Multimodal OverSenSitivity Benchmark (MOSSBench). This toolkit consists of 300 manually collected benign multimodal queries, cross-verified by third-party reviewers (AMT). Empirical studies using MOSSBench on 20 MLLMs reveal several insights: (1). Oversensitivity is prevalent among SOTA MLLMs, with refusal rates reaching up to 76% for harmless queries. (2). Safer models are more oversensitive: increasing safety may inadvertently raise caution and conservatism in the model's responses. (3). Different types of stimuli tend to cause errors at specific stages -- perception, intent reasoning, and safety judgement -- in the response process of MLLMs. These findings highlight the need for refined safety mechanisms that balance caution with contextually appropriate responses, improving the reliability of MLLMs in real-world applications. We make our project available at https://turningpoint-ai.github.io/MOSSBench/.
NUS-Emo at SemEval-2024 Task 3: Instruction-Tuning LLM for Multimodal Emotion-Cause Analysis in Conversations
This paper describes the architecture of our system developed for Task 3 of SemEval-2024: Multimodal Emotion-Cause Analysis in Conversations. Our project targets the challenges of subtask 2, dedicated to Multimodal Emotion-Cause Pair Extraction with Emotion Category (MECPE-Cat), and constructs a dual-component system tailored to the unique challenges of this task. We divide the task into two subtasks: emotion recognition in conversation (ERC) and emotion-cause pair extraction (ECPE). To address these subtasks, we capitalize on the abilities of Large Language Models (LLMs), which have consistently demonstrated state-of-the-art performance across various natural language processing tasks and domains. Most importantly, we design an approach of emotion-cause-aware instruction-tuning for LLMs, to enhance the perception of the emotions with their corresponding causal rationales. Our method enables us to adeptly navigate the complexities of MECPE-Cat, achieving a weighted average 34.71% F1 score of the task, and securing the 2nd rank on the leaderboard. The code and metadata to reproduce our experiments are all made publicly available.
Conversational Analysis of Daily Dialog Data using Polite Emotional Dialogue Acts
Many socio-linguistic cues are used in conversational analysis, such as emotion, sentiment, and dialogue acts. One of the fundamental cues is politeness, which linguistically possesses properties such as social manners useful in conversational analysis. This article presents findings of polite emotional dialogue act associations, where we can correlate the relationships between the socio-linguistic cues. We confirm our hypothesis that the utterances with the emotion classes Anger and Disgust are more likely to be impolite. At the same time, Happiness and Sadness are more likely to be polite. A less expectable phenomenon occurs with dialogue acts Inform and Commissive which contain more polite utterances than Question and Directive. Finally, we conclude on the future work of these findings to extend the learning of social behaviours using politeness.
CoMPM: Context Modeling with Speaker's Pre-trained Memory Tracking for Emotion Recognition in Conversation
As the use of interactive machines grow, the task of Emotion Recognition in Conversation (ERC) became more important. If the machine-generated sentences reflect emotion, more human-like sympathetic conversations are possible. Since emotion recognition in conversation is inaccurate if the previous utterances are not taken into account, many studies reflect the dialogue context to improve the performances. Many recent approaches show performance improvement by combining knowledge into modules learned from external structured data. However, structured data is difficult to access in non-English languages, making it difficult to extend to other languages. Therefore, we extract the pre-trained memory using the pre-trained language model as an extractor of external knowledge. We introduce CoMPM, which combines the speaker's pre-trained memory with the context model, and find that the pre-trained memory significantly improves the performance of the context model. CoMPM achieves the first or second performance on all data and is state-of-the-art among systems that do not leverage structured data. In addition, our method shows that it can be extended to other languages because structured knowledge is not required, unlike previous methods. Our code is available on github (https://github.com/rungjoo/CoMPM).
Emolysis: A Multimodal Open-Source Group Emotion Analysis and Visualization Toolkit
Automatic group emotion recognition plays an important role in understanding complex human-human interaction. This paper introduces, Emolysis, a standalone open-source toolkit for real-time multimodal group emotion recognition and visualization. Given any input video, Emolysis processes nearly real-time synchronized multimodal input and maps it to group level emotion, valence and arousal. Additionally, the toolkit supports major mobile and desktop platforms (Android, iOS, Windows). The Emolysis platform also comes with an intuitive graphical user interface that allows users to select different modalities and target persons for more fine grained emotion analysis. Emolysis is freely available for academic research, and encourages application developers to extend it to application specific environments on top of the existing system. We believe that the extension mechanism is quite straightforward. Our code and models are available at https://github.com/ControlNet/emolysis.
Leveraging Recent Advances in Deep Learning for Audio-Visual Emotion Recognition
Emotional expressions are the behaviors that communicate our emotional state or attitude to others. They are expressed through verbal and non-verbal communication. Complex human behavior can be understood by studying physical features from multiple modalities; mainly facial, vocal and physical gestures. Recently, spontaneous multi-modal emotion recognition has been extensively studied for human behavior analysis. In this paper, we propose a new deep learning-based approach for audio-visual emotion recognition. Our approach leverages recent advances in deep learning like knowledge distillation and high-performing deep architectures. The deep feature representations of the audio and visual modalities are fused based on a model-level fusion strategy. A recurrent neural network is then used to capture the temporal dynamics. Our proposed approach substantially outperforms state-of-the-art approaches in predicting valence on the RECOLA dataset. Moreover, our proposed visual facial expression feature extraction network outperforms state-of-the-art results on the AffectNet and Google Facial Expression Comparison datasets.
SUN Team's Contribution to ABAW 2024 Competition: Audio-visual Valence-Arousal Estimation and Expression Recognition
As emotions play a central role in human communication, automatic emotion recognition has attracted increasing attention in the last two decades. While multimodal systems enjoy high performances on lab-controlled data, they are still far from providing ecological validity on non-lab-controlled, namely 'in-the-wild' data. This work investigates audiovisual deep learning approaches for emotion recognition in-the-wild problem. We particularly explore the effectiveness of architectures based on fine-tuned Convolutional Neural Networks (CNN) and Public Dimensional Emotion Model (PDEM), for video and audio modality, respectively. We compare alternative temporal modeling and fusion strategies using the embeddings from these multi-stage trained modality-specific Deep Neural Networks (DNN). We report results on the AffWild2 dataset under Affective Behavior Analysis in-the-Wild 2024 (ABAW'24) challenge protocol.
How you feelin'? Learning Emotions and Mental States in Movie Scenes
Movie story analysis requires understanding characters' emotions and mental states. Towards this goal, we formulate emotion understanding as predicting a diverse and multi-label set of emotions at the level of a movie scene and for each character. We propose EmoTx, a multimodal Transformer-based architecture that ingests videos, multiple characters, and dialog utterances to make joint predictions. By leveraging annotations from the MovieGraphs dataset, we aim to predict classic emotions (e.g. happy, angry) and other mental states (e.g. honest, helpful). We conduct experiments on the most frequently occurring 10 and 25 labels, and a mapping that clusters 181 labels to 26. Ablation studies and comparison against adapted state-of-the-art emotion recognition approaches shows the effectiveness of EmoTx. Analyzing EmoTx's self-attention scores reveals that expressive emotions often look at character tokens while other mental states rely on video and dialog cues.
Integrating Wearable Sensor Data and Self-reported Diaries for Personalized Affect Forecasting
Emotional states, as indicators of affect, are pivotal to overall health, making their accurate prediction before onset crucial. Current studies are primarily centered on immediate short-term affect detection using data from wearable and mobile devices. These studies typically focus on objective sensory measures, often neglecting other forms of self-reported information like diaries and notes. In this paper, we propose a multimodal deep learning model for affect status forecasting. This model combines a transformer encoder with a pre-trained language model, facilitating the integrated analysis of objective metrics and self-reported diaries. To validate our model, we conduct a longitudinal study, enrolling college students and monitoring them over a year, to collect an extensive dataset including physiological, environmental, sleep, metabolic, and physical activity parameters, alongside open-ended textual diaries provided by the participants. Our results demonstrate that the proposed model achieves predictive accuracy of 82.50% for positive affect and 82.76% for negative affect, a full week in advance. The effectiveness of our model is further elevated by its explainability.
EmoBench: Evaluating the Emotional Intelligence of Large Language Models
Recent advances in Large Language Models (LLMs) have highlighted the need for robust, comprehensive, and challenging benchmarks. Yet, research on evaluating their Emotional Intelligence (EI) is considerably limited. Existing benchmarks have two major shortcomings: first, they mainly focus on emotion recognition, neglecting essential EI capabilities such as emotion regulation and thought facilitation through emotion understanding; second, they are primarily constructed from existing datasets, which include frequent patterns, explicit information, and annotation errors, leading to unreliable evaluation. We propose EmoBench, a benchmark that draws upon established psychological theories and proposes a comprehensive definition for machine EI, including Emotional Understanding and Emotional Application. EmoBench includes a set of 400 hand-crafted questions in English and Chinese, which are meticulously designed to require thorough reasoning and understanding. Our findings reveal a considerable gap between the EI of existing LLMs and the average human, highlighting a promising direction for future research. Our code and data will be publicly available from https://github.com/Sahandfer/EmoBench.
"I'm Not Sure, But...": Examining the Impact of Large Language Models' Uncertainty Expression on User Reliance and Trust
Widely deployed large language models (LLMs) can produce convincing yet incorrect outputs, potentially misleading users who may rely on them as if they were correct. To reduce such overreliance, there have been calls for LLMs to communicate their uncertainty to end users. However, there has been little empirical work examining how users perceive and act upon LLMs' expressions of uncertainty. We explore this question through a large-scale, pre-registered, human-subject experiment (N=404) in which participants answer medical questions with or without access to responses from a fictional LLM-infused search engine. Using both behavioral and self-reported measures, we examine how different natural language expressions of uncertainty impact participants' reliance, trust, and overall task performance. We find that first-person expressions (e.g., "I'm not sure, but...") decrease participants' confidence in the system and tendency to agree with the system's answers, while increasing participants' accuracy. An exploratory analysis suggests that this increase can be attributed to reduced (but not fully eliminated) overreliance on incorrect answers. While we observe similar effects for uncertainty expressed from a general perspective (e.g., "It's not clear, but..."), these effects are weaker and not statistically significant. Our findings suggest that using natural language expressions of uncertainty may be an effective approach for reducing overreliance on LLMs, but that the precise language used matters. This highlights the importance of user testing before deploying LLMs at scale.
Beyond No: Quantifying AI Over-Refusal and Emotional Attachment Boundaries
We present an open-source benchmark and evaluation framework for assessing emotional boundary handling in Large Language Models (LLMs). Using a dataset of 1156 prompts across six languages, we evaluated three leading LLMs (GPT-4o, Claude-3.5 Sonnet, and Mistral-large) on their ability to maintain appropriate emotional boundaries through pattern-matched response analysis. Our framework quantifies responses across seven key patterns: direct refusal, apology, explanation, deflection, acknowledgment, boundary setting, and emotional awareness. Results demonstrate significant variation in boundary-handling approaches, with Claude-3.5 achieving the highest overall score (8.69/10) and producing longer, more nuanced responses (86.51 words on average). We identified a substantial performance gap between English (average score 25.62) and non-English interactions (< 0.22), with English responses showing markedly higher refusal rates (43.20% vs. < 1% for non-English). Pattern analysis revealed model-specific strategies, such as Mistral's preference for deflection (4.2%) and consistently low empathy scores across all models (< 0.06). Limitations include potential oversimplification through pattern matching, lack of contextual understanding in response analysis, and binary classification of complex emotional responses. Future work should explore more nuanced scoring methods, expand language coverage, and investigate cultural variations in emotional boundary expectations. Our benchmark and methodology provide a foundation for systematic evaluation of LLM emotional intelligence and boundary-setting capabilities.
Data Augmentation for Improving Emotion Recognition in Software Engineering Communication
Emotions (e.g., Joy, Anger) are prevalent in daily software engineering (SE) activities, and are known to be significant indicators of work productivity (e.g., bug fixing efficiency). Recent studies have shown that directly applying general purpose emotion classification tools to SE corpora is not effective. Even within the SE domain, tool performance degrades significantly when trained on one communication channel and evaluated on another (e.g, StackOverflow vs. GitHub comments). Retraining a tool with channel-specific data takes significant effort since manually annotating large datasets of ground truth data is expensive. In this paper, we address this data scarcity problem by automatically creating new training data using a data augmentation technique. Based on an analysis of the types of errors made by popular SE-specific emotion recognition tools, we specifically target our data augmentation strategy in order to improve the performance of emotion recognition. Our results show an average improvement of 9.3% in micro F1-Score for three existing emotion classification tools (ESEM-E, EMTk, SEntiMoji) when trained with our best augmentation strategy.
BLSP-Emo: Towards Empathetic Large Speech-Language Models
The recent release of GPT-4o showcased the potential of end-to-end multimodal models, not just in terms of low latency but also in their ability to understand and generate expressive speech with rich emotions. While the details are unknown to the open research community, it likely involves significant amounts of curated data and compute, neither of which is readily accessible. In this paper, we present BLSP-Emo (Bootstrapped Language-Speech Pretraining with Emotion support), a novel approach to developing an end-to-end speech-language model capable of understanding both semantics and emotions in speech and generate empathetic responses. BLSP-Emo utilizes existing speech recognition (ASR) and speech emotion recognition (SER) datasets through a two-stage process. The first stage focuses on semantic alignment, following recent work on pretraining speech-language models using ASR data. The second stage performs emotion alignment with the pretrained speech-language model on an emotion-aware continuation task constructed from SER data. Our experiments demonstrate that the BLSP-Emo model excels in comprehending speech and delivering empathetic responses, both in instruction-following tasks and conversations.
NegativePrompt: Leveraging Psychology for Large Language Models Enhancement via Negative Emotional Stimuli
Large Language Models (LLMs) have become integral to a wide spectrum of applications, ranging from traditional computing tasks to advanced artificial intelligence (AI) applications. This widespread adoption has spurred extensive research into LLMs across various disciplines, including the social sciences. Notably, studies have revealed that LLMs possess emotional intelligence, which can be further developed through positive emotional stimuli. This discovery raises an intriguing question: can negative emotions similarly influence LLMs, potentially enhancing their performance? In response to this question, we introduce NegativePrompt, a novel approach underpinned by psychological principles, involving ten specifically designed negative emotional stimuli. We embark on rigorous experimental evaluations of five LLMs including Flan-T5-Large, Vicuna, Llama 2, ChatGPT, and GPT-4, across a set of 45 tasks. The results are revealing: NegativePrompt markedly enhances the performance of LLMs, evidenced by relative improvements of 12.89% in Instruction Induction tasks and 46.25% in BIG-Bench tasks. Moreover, we conduct attention visualization experiments to decipher the underlying mechanisms of NegativePrompt's influence. Our research contributes significantly to the understanding of LLMs and emotion interaction, demonstrating the practical efficacy of NegativePrompt as an emotion-driven method and offering novel insights for the enhancement of LLMs in real-world applications. The code is available at https://github.com/wangxu0820/NegativePrompt.
Mining Dual Emotion for Fake News Detection
Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news often evokes high-arousal or activating emotions of people, so the emotions of news comments aroused in the crowd (i.e., social emotion) should not be ignored. Furthermore, it remains to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In this paper, we verify that dual emotion is distinctive between fake and real news and propose Dual Emotion Features to represent dual emotion and the relationship between them for fake news detection. Further, we exhibit that our proposed features can be easily plugged into existing fake news detectors as an enhancement. Extensive experiments on three real-world datasets (one in English and the others in Chinese) show that our proposed feature set: 1) outperforms the state-of-the-art task-related emotional features; 2) can be well compatible with existing fake news detectors and effectively improve the performance of detecting fake news.
Violation of Expectation via Metacognitive Prompting Reduces Theory of Mind Prediction Error in Large Language Models
Recent research shows that Large Language Models (LLMs) exhibit a compelling level of proficiency in Theory of Mind (ToM) tasks. This ability to impute unobservable mental states to others is vital to human social cognition and may prove equally important in principal-agent relations between individual humans and Artificial Intelligences (AIs). In this paper, we explore how a mechanism studied in developmental psychology known as Violation of Expectation (VoE) can be implemented to reduce errors in LLM prediction about users by leveraging emergent ToM affordances. And we introduce a metacognitive prompting framework to apply VoE in the context of an AI tutor. By storing and retrieving facts derived in cases where LLM expectation about the user was violated, we find that LLMs are able to learn about users in ways that echo theories of human learning. Finally, we discuss latent hazards and augmentative opportunities associated with modeling user psychology and propose ways to mitigate risk along with possible directions for future inquiry.
Symbolic & Acoustic: Multi-domain Music Emotion Modeling for Instrumental Music
Music Emotion Recognition involves the automatic identification of emotional elements within music tracks, and it has garnered significant attention due to its broad applicability in the field of Music Information Retrieval. It can also be used as the upstream task of many other human-related tasks such as emotional music generation and music recommendation. Due to existing psychology research, music emotion is determined by multiple factors such as the Timbre, Velocity, and Structure of the music. Incorporating multiple factors in MER helps achieve more interpretable and finer-grained methods. However, most prior works were uni-domain and showed weak consistency between arousal modeling performance and valence modeling performance. Based on this background, we designed a multi-domain emotion modeling method for instrumental music that combines symbolic analysis and acoustic analysis. At the same time, because of the rarity of music data and the difficulty of labeling, our multi-domain approach can make full use of limited data. Our approach was implemented and assessed using the publicly available piano dataset EMOPIA, resulting in a notable improvement over our baseline model with a 2.4% increase in overall accuracy, establishing its state-of-the-art performance.
Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes
Empathy is a complex cognitive ability based on the reasoning of others' affective states. In order to better understand others and express stronger empathy in dialogues, we argue that two issues must be tackled at the same time: (i) identifying which word is the cause for the other's emotion from his or her utterance and (ii) reflecting those specific words in the response generation. However, previous approaches for recognizing emotion cause words in text require sub-utterance level annotations, which can be demanding. Taking inspiration from social cognition, we leverage a generative estimator to infer emotion cause words from utterances with no word-level label. Also, we introduce a novel method based on pragmatics to make dialogue models focus on targeted words in the input during generation. Our method is applicable to any dialogue models with no additional training on the fly. We show our approach improves multiple best-performing dialogue agents on generating more focused empathetic responses in terms of both automatic and human evaluation.
Textualized and Feature-based Models for Compound Multimodal Emotion Recognition in the Wild
Systems for multimodal emotion recognition (ER) are commonly trained to extract features from different modalities (e.g., visual, audio, and textual) that are combined to predict individual basic emotions. However, compound emotions often occur in real-world scenarios, and the uncertainty of recognizing such complex emotions over diverse modalities is challenging for feature-based models As an alternative, emerging multimodal large language models (LLMs) like BERT and LLaMA rely on explicit non-verbal cues that may be translated from different non-textual modalities (e.g., audio and visual) into text. Textualization of modalities augments data with emotional cues to help the LLM encode the interconnections between all modalities in a shared text space. In such text-based models, prior knowledge of ER tasks is leveraged to textualize relevant nonverbal cues such as audio tone from vocal expressions, and action unit intensity from facial expressions. Since the pre-trained weights are publicly available for many LLMs, training on large-scale datasets is unnecessary, allowing fine-tuning for downstream tasks such as compound ER (CER). This paper compares the potential of text- and feature-based approaches for compound multimodal ER in videos. Experiments were conducted on the challenging C-EXPR-DB dataset in the wild for CER, and contrasted with results on the MELD dataset for basic ER. Our results indicate that multimodal textualization provides lower accuracy than feature-based models on C-EXPR-DB, where text transcripts are captured in the wild. However, higher accuracy can be achieved when the video data has rich transcripts. Our code is available.
Improving Language Models for Emotion Analysis: Insights from Cognitive Science
We propose leveraging cognitive science research on emotions and communication to improve language models for emotion analysis. First, we present the main emotion theories in psychology and cognitive science. Then, we introduce the main methods of emotion annotation in natural language processing and their connections to psychological theories. We also present the two main types of analyses of emotional communication in cognitive pragmatics. Finally, based on the cognitive science research presented, we propose directions for improving language models for emotion analysis. We suggest that these research efforts pave the way for constructing new annotation schemes, methods, and a possible benchmark for emotional understanding, considering different facets of human emotion and communication.
MDPE: A Multimodal Deception Dataset with Personality and Emotional Characteristics
Deception detection has garnered increasing attention in recent years due to the significant growth of digital media and heightened ethical and security concerns. It has been extensively studied using multimodal methods, including video, audio, and text. In addition, individual differences in deception production and detection are believed to play a crucial role.Although some studies have utilized individual information such as personality traits to enhance the performance of deception detection, current systems remain limited, partly due to a lack of sufficient datasets for evaluating performance. To address this issue, we introduce a multimodal deception dataset MDPE. Besides deception features, this dataset also includes individual differences information in personality and emotional expression characteristics. It can explore the impact of individual differences on deception behavior. It comprises over 104 hours of deception and emotional videos from 193 subjects. Furthermore, we conducted numerous experiments to provide valuable insights for future deception detection research. MDPE not only supports deception detection, but also provides conditions for tasks such as personality recognition and emotion recognition, and can even study the relationships between them. We believe that MDPE will become a valuable resource for promoting research in the field of affective computing.
EmotionIC: Emotional Inertia and Contagion-driven Dependency Modelling for Emotion Recognition in Conversation
Emotion Recognition in Conversation (ERC) has attracted growing attention in recent years as a result of the advancement and implementation of human-computer interface technologies. However, previous approaches to modeling global and local context dependencies lost the diversity of dependency information and do not take the context dependency into account at the classification level. In this paper, we propose a novel approach to dependency modeling driven by Emotional Inertia and Contagion (EmotionIC) for conversational emotion recognition at the feature extraction and classification levels. At the feature extraction level, our designed Identity Masked Multi-head Attention (IM-MHA) captures the identity-based long-distant context in the dialogue to contain the diverse influence of different participants and construct the global emotional atmosphere, while the devised Dialogue-based Gate Recurrent Unit (DialogGRU) that aggregates the emotional tendencies of dyadic dialogue is applied to refine the contextual features with inter- and intra-speaker dependencies. At the classification level, by introducing skip connections in Conditional Random Field (CRF), we elaborate the Skip-chain CRF (SkipCRF) to capture the high-order dependencies within and between speakers, and to emulate the emotional flow of distant participants. Experimental results show that our method can significantly outperform the state-of-the-art models on four benchmark datasets. The ablation studies confirm that our modules can effectively model emotional inertia and contagion.
Audio Visual Emotion Recognition with Temporal Alignment and Perception Attention
This paper focuses on two key problems for audio-visual emotion recognition in the video. One is the audio and visual streams temporal alignment for feature level fusion. The other one is locating and re-weighting the perception attentions in the whole audio-visual stream for better recognition. The Long Short Term Memory Recurrent Neural Network (LSTM-RNN) is employed as the main classification architecture. Firstly, soft attention mechanism aligns the audio and visual streams. Secondly, seven emotion embedding vectors, which are corresponding to each classification emotion type, are added to locate the perception attentions. The locating and re-weighting process is also based on the soft attention mechanism. The experiment results on EmotiW2015 dataset and the qualitative analysis show the efficiency of the proposed two techniques.
The Effect of Silence Feature in Dimensional Speech Emotion Recognition
Silence is a part of human-to-human communication, which can be a clue for human emotion perception. For automatic emotion recognition by a computer, it is not clear whether silence is useful to determine human emotion within a speech. This paper presents an investigation of the effect of using silence feature in dimensional emotion recognition. Since the silence feature is extracted per utterance, we grouped the silence feature with high statistical functions from a set of acoustic features. The result reveals that the silence features affect the arousal dimension more than other emotion dimensions. The proper choice of a threshold factor in the calculation of silence feature improved the performance of dimensional speech emotion recognition performance, in terms of a concordance correlation coefficient. On the other side, improper choice of that factor leads to a decrease in performance by using the same architecture.
Towards Emotion-Based Synthetic Consciousness: Using LLMs to Estimate Emotion Probability Vectors
This paper shows how LLMs (Large Language Models) may be used to estimate a summary of the emotional state associated with piece of text. The summary of emotional state is a dictionary of words used to describe emotion together with the probability of the word appearing after a prompt comprising the original text and an emotion eliciting tail. Through emotion analysis of Amazon product reviews we demonstrate emotion descriptors can be mapped into a PCA type space. It was hoped that text descriptions of actions to improve a current text described state could also be elicited through a tail prompt. Experiment seemed to indicate that this is not straightforward to make work. This failure put our hoped for selection of action via choosing the best predict ed outcome via comparing emotional responses out of reach for the moment.
IMBUE: Improving Interpersonal Effectiveness through Simulation and Just-in-time Feedback with Human-Language Model Interaction
Navigating certain communication situations can be challenging due to individuals' lack of skills and the interference of strong emotions. However, effective learning opportunities are rarely accessible. In this work, we conduct a human-centered study that uses language models to simulate bespoke communication training and provide just-in-time feedback to support the practice and learning of interpersonal effectiveness skills. We apply the interpersonal effectiveness framework from Dialectical Behavioral Therapy (DBT), DEAR MAN, which focuses on both conversational and emotional skills. We present IMBUE, an interactive training system that provides feedback 25% more similar to experts' feedback, compared to that generated by GPT-4. IMBUE is the first to focus on communication skills and emotion management simultaneously, incorporate experts' domain knowledge in providing feedback, and be grounded in psychology theory. Through a randomized trial of 86 participants, we find that IMBUE's simulation-only variant significantly improves participants' self-efficacy (up to 17%) and reduces negative emotions (up to 25%). With IMBUE's additional just-in-time feedback, participants demonstrate 17% improvement in skill mastery, along with greater enhancements in self-efficacy (27% more) and reduction of negative emotions (16% more) compared to simulation-only. The improvement in skill mastery is the only measure that is transferred to new and more difficult situations; situation specific training is necessary for improving self-efficacy and emotion reduction.
EERPD: Leveraging Emotion and Emotion Regulation for Improving Personality Detection
Personality is a fundamental construct in psychology, reflecting an individual's behavior, thinking, and emotional patterns. Previous researches have made some progress in personality detection, primarily by utilizing the whole text to predict personality. However, these studies generally tend to overlook psychological knowledge: they rarely apply the well-established correlations between emotion regulation and personality. Based on this, we propose a new personality detection method called EERPD. This method introduces the use of emotion regulation, a psychological concept highly correlated with personality, for personality prediction. By combining this feature with emotion features, it retrieves few-shot examples and provides process CoTs for inferring labels from text. This approach enhances the understanding of LLM for personality within text and improves the performance in personality detection. Experimental results demonstrate that EERPD significantly enhances the accuracy and robustness of personality detection, outperforming previous SOTA by 15.05/4.29 in average F1 on the two benchmark datasets.
Improving Multi-turn Emotional Support Dialogue Generation with Lookahead Strategy Planning
Providing Emotional Support (ES) to soothe people in emotional distress is an essential capability in social interactions. Most existing researches on building ES conversation systems only considered single-turn interactions with users, which was over-simplified. In comparison, multi-turn ES conversation systems can provide ES more effectively, but face several new technical challenges, including: (1) how to adopt appropriate support strategies to achieve the long-term dialogue goal of comforting the user's emotion; (2) how to dynamically model the user's state. In this paper, we propose a novel system MultiESC to address these issues. For strategy planning, drawing inspiration from the A* search algorithm, we propose lookahead heuristics to estimate the future user feedback after using particular strategies, which helps to select strategies that can lead to the best long-term effects. For user state modeling, MultiESC focuses on capturing users' subtle emotional expressions and understanding their emotion causes. Extensive experiments show that MultiESC significantly outperforms competitive baselines in both dialogue generation and strategy planning. Our codes are available at https://github.com/lwgkzl/MultiESC.
Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset
One challenge for dialogue agents is recognizing feelings in the conversation partner and replying accordingly, a key communicative skill. While it is straightforward for humans to recognize and acknowledge others' feelings in a conversation, this is a significant challenge for AI systems due to the paucity of suitable publicly-available datasets for training and evaluation. This work proposes a new benchmark for empathetic dialogue generation and EmpatheticDialogues, a novel dataset of 25k conversations grounded in emotional situations. Our experiments indicate that dialogue models that use our dataset are perceived to be more empathetic by human evaluators, compared to models merely trained on large-scale Internet conversation data. We also present empirical comparisons of dialogue model adaptations for empathetic responding, leveraging existing models or datasets without requiring lengthy re-training of the full model.
Uncovering the Causes of Emotions in Software Developer Communication Using Zero-shot LLMs
Understanding and identifying the causes behind developers' emotions (e.g., Frustration caused by `delays in merging pull requests') can be crucial towards finding solutions to problems and fostering collaboration in open-source communities. Effectively identifying such information in the high volume of communications across the different project channels, such as chats, emails, and issue comments, requires automated recognition of emotions and their causes. To enable this automation, large-scale software engineering-specific datasets that can be used to train accurate machine learning models are required. However, such datasets are expensive to create with the variety and informal nature of software projects' communication channels. In this paper, we explore zero-shot LLMs that are pre-trained on massive datasets but without being fine-tuned specifically for the task of detecting emotion causes in software engineering: ChatGPT, GPT-4, and flan-alpaca. Our evaluation indicates that these recently available models can identify emotion categories when given detailed emotions, although they perform worse than the top-rated models. For emotion cause identification, our results indicate that zero-shot LLMs are effective at recognizing the correct emotion cause with a BLEU-2 score of 0.598. To highlight the potential use of these techniques, we conduct a case study of the causes of Frustration in the last year of development of a popular open-source project, revealing several interesting insights.
A Multi-Task, Multi-Modal Approach for Predicting Categorical and Dimensional Emotions
Speech emotion recognition (SER) has received a great deal of attention in recent years in the context of spontaneous conversations. While there have been notable results on datasets like the well known corpus of naturalistic dyadic conversations, IEMOCAP, for both the case of categorical and dimensional emotions, there are few papers which try to predict both paradigms at the same time. Therefore, in this work, we aim to highlight the performance contribution of multi-task learning by proposing a multi-task, multi-modal system that predicts categorical and dimensional emotions. The results emphasise the importance of cross-regularisation between the two types of emotions. Our approach consists of a multi-task, multi-modal architecture that uses parallel feature refinement through self-attention for the feature of each modality. In order to fuse the features, our model introduces a set of learnable bridge tokens that merge the acoustic and linguistic features with the help of cross-attention. Our experiments for categorical emotions on 10-fold validation yield results comparable to the current state-of-the-art. In our configuration, our multi-task approach provides better results compared to learning each paradigm separately. On top of that, our best performing model achieves a high result for valence compared to the previous multi-task experiments.
ExpLLM: Towards Chain of Thought for Facial Expression Recognition
Facial expression recognition (FER) is a critical task in multimedia with significant implications across various domains. However, analyzing the causes of facial expressions is essential for accurately recognizing them. Current approaches, such as those based on facial action units (AUs), typically provide AU names and intensities but lack insight into the interactions and relationships between AUs and the overall expression. In this paper, we propose a novel method called ExpLLM, which leverages large language models to generate an accurate chain of thought (CoT) for facial expression recognition. Specifically, we have designed the CoT mechanism from three key perspectives: key observations, overall emotional interpretation, and conclusion. The key observations describe the AU's name, intensity, and associated emotions. The overall emotional interpretation provides an analysis based on multiple AUs and their interactions, identifying the dominant emotions and their relationships. Finally, the conclusion presents the final expression label derived from the preceding analysis. Furthermore, we also introduce the Exp-CoT Engine, designed to construct this expression CoT and generate instruction-description data for training our ExpLLM. Extensive experiments on the RAF-DB and AffectNet datasets demonstrate that ExpLLM outperforms current state-of-the-art FER methods. ExpLLM also surpasses the latest GPT-4o in expression CoT generation, particularly in recognizing micro-expressions where GPT-4o frequently fails.
Hugging Rain Man: A Novel Facial Action Units Dataset for Analyzing Atypical Facial Expressions in Children with Autism Spectrum Disorder
Children with Autism Spectrum Disorder (ASD) often exhibit atypical facial expressions. However, the specific objective facial features that underlie this subjective perception remain unclear. In this paper, we introduce a novel dataset, Hugging Rain Man (HRM), which includes facial action units (AUs) manually annotated by FACS experts for both children with ASD and typical development (TD). The dataset comprises a rich collection of posed and spontaneous facial expressions, totaling approximately 130,000 frames, along with 22 AUs, 10 Action Descriptors (ADs), and atypicality ratings. A statistical analysis of static images from the HRM reveals significant differences between the ASD and TD groups across multiple AUs and ADs when displaying the same emotional expressions, confirming that participants with ASD tend to demonstrate more irregular and diverse expression patterns. Subsequently, a temporal regression method was presented to analyze atypicality of dynamic sequences, thereby bridging the gap between subjective perception and objective facial characteristics. Furthermore, baseline results for AU detection are provided for future research reference. This work not only contributes to our understanding of the unique facial expression characteristics associated with ASD but also provides potential tools for ASD early screening. Portions of the dataset, features, and pretrained models are accessible at: https://github.com/Jonas-DL/Hugging-Rain-Man.
Steering Language Model to Stable Speech Emotion Recognition via Contextual Perception and Chain of Thought
Large-scale audio language models (ALMs), such as Qwen2-Audio, are capable of comprehending diverse audio signal, performing audio analysis and generating textual responses. However, in speech emotion recognition (SER), ALMs often suffer from hallucinations, resulting in misclassifications or irrelevant outputs. To address these challenges, we propose C^2SER, a novel ALM designed to enhance the stability and accuracy of SER through Contextual perception and Chain of Thought (CoT). C^2SER integrates the Whisper encoder for semantic perception and Emotion2Vec-S for acoustic perception, where Emotion2Vec-S extends Emotion2Vec with semi-supervised learning to enhance emotional discrimination. Additionally, C^2SER employs a CoT approach, processing SER in a step-by-step manner while leveraging speech content and speaking styles to improve recognition. To further enhance stability, C^2SER introduces self-distillation from explicit CoT to implicit CoT, mitigating error accumulation and boosting recognition accuracy. Extensive experiments show that C^2SER outperforms existing popular ALMs, such as Qwen2-Audio and SECap, delivering more stable and precise emotion recognition. We release the training code, checkpoints, and test sets to facilitate further research.
Towards Multi-Turn Empathetic Dialogs with Positive Emotion Elicitation
Emotional support is a crucial skill for many real-world scenarios, including caring for the elderly, mental health support, and customer service chats. This paper presents a novel task of empathetic dialog generation with positive emotion elicitation to promote users' positive emotions, similar to that of emotional support between humans. In this task, the agent conducts empathetic responses along with the target of eliciting the user's positive emotions in the multi-turn dialog. To facilitate the study of this task, we collect a large-scale emotional dialog dataset with positive emotion elicitation, called PosEmoDial (about 820k dialogs, 3M utterances). In these dialogs, the agent tries to guide the user from any possible initial emotional state, e.g., sadness, to a positive emotional state. Then we present a positive-emotion-guided dialog generation model with a novel loss function design. This loss function encourages the dialog model to not only elicit positive emotions from users but also ensure smooth emotional transitions along with the whole dialog. Finally, we establish benchmark results on PosEmoDial, and we will release this dataset and related source code to facilitate future studies.
Towards Multimodal Empathetic Response Generation: A Rich Text-Speech-Vision Avatar-based Benchmark
Empathetic Response Generation (ERG) is one of the key tasks of the affective computing area, which aims to produce emotionally nuanced and compassionate responses to user's queries. However, existing ERG research is predominantly confined to the singleton text modality, limiting its effectiveness since human emotions are inherently conveyed through multiple modalities. To combat this, we introduce an avatar-based Multimodal ERG (MERG) task, entailing rich text, speech, and facial vision information. We first present a large-scale high-quality benchmark dataset, AvaMERG, which extends traditional text ERG by incorporating authentic human speech audio and dynamic talking-face avatar videos, encompassing a diverse range of avatar profiles and broadly covering various topics of real-world scenarios. Further, we deliberately tailor a system, named Empatheia, for MERG. Built upon a Multimodal Large Language Model (MLLM) with multimodal encoder, speech and avatar generators, Empatheia performs end-to-end MERG, with Chain-of-Empathetic reasoning mechanism integrated for enhanced empathy understanding and reasoning. Finally, we devise a list of empathetic-enhanced tuning strategies, strengthening the capabilities of emotional accuracy and content, avatar-profile consistency across modalities. Experimental results on AvaMERG data demonstrate that Empatheia consistently shows superior performance than baseline methods on both textual ERG and MERG. Overall, this work is expected to pioneer the MERG research by introducing a novel benchmark and an end-to-end model, laying a solid foundation for future advancements in multimodal empathetic response generation.
Towards Interpretable Mental Health Analysis with Large Language Models
The latest large language models (LLMs) such as ChatGPT, exhibit strong capabilities in automated mental health analysis. However, existing relevant studies bear several limitations, including inadequate evaluations, lack of prompting strategies, and ignorance of exploring LLMs for explainability. To bridge these gaps, we comprehensively evaluate the mental health analysis and emotional reasoning ability of LLMs on 11 datasets across 5 tasks. We explore the effects of different prompting strategies with unsupervised and distantly supervised emotional information. Based on these prompts, we explore LLMs for interpretable mental health analysis by instructing them to generate explanations for each of their decisions. We convey strict human evaluations to assess the quality of the generated explanations, leading to a novel dataset with 163 human-assessed explanations. We benchmark existing automatic evaluation metrics on this dataset to guide future related works. According to the results, ChatGPT shows strong in-context learning ability but still has a significant gap with advanced task-specific methods. Careful prompt engineering with emotional cues and expert-written few-shot examples can also effectively improve performance on mental health analysis. In addition, ChatGPT generates explanations that approach human performance, showing its great potential in explainable mental health analysis.
Emotional RAG: Enhancing Role-Playing Agents through Emotional Retrieval
As LLMs exhibit a high degree of human-like capability, increasing attention has been paid to role-playing research areas in which responses generated by LLMs are expected to mimic human replies. This has promoted the exploration of role-playing agents in various applications, such as chatbots that can engage in natural conversations with users and virtual assistants that can provide personalized support and guidance. The crucial factor in the role-playing task is the effective utilization of character memory, which stores characters' profiles, experiences, and historical dialogues. Retrieval Augmented Generation (RAG) technology is used to access the related memory to enhance the response generation of role-playing agents. Most existing studies retrieve related information based on the semantic similarity of memory to maintain characters' personalized traits, and few attempts have been made to incorporate the emotional factor in the retrieval argument generation (RAG) of LLMs. Inspired by the Mood-Dependent Memory theory, which indicates that people recall an event better if they somehow reinstate during recall the original emotion they experienced during learning, we propose a novel emotion-aware memory retrieval framework, termed Emotional RAG, which recalls the related memory with consideration of emotional state in role-playing agents. Specifically, we design two kinds of retrieval strategies, i.e., combination strategy and sequential strategy, to incorporate both memory semantic and emotional states during the retrieval process. Extensive experiments on three representative role-playing datasets demonstrate that our Emotional RAG framework outperforms the method without considering the emotional factor in maintaining the personalities of role-playing agents. This provides evidence to further reinforce the Mood-Dependent Memory theory in psychology.
TONE: A 3-Tiered ONtology for Emotion analysis
Emotions have played an important part in many sectors, including psychology, medicine, mental health, computer science, and so on, and categorizing them has proven extremely useful in separating one emotion from another. Emotions can be classified using the following two methods: (1) The supervised method's efficiency is strongly dependent on the size and domain of the data collected. A categorization established using relevant data from one domain may not work well in another. (2) An unsupervised method that uses either domain expertise or a knowledge base of emotion types already exists. Though this second approach provides a suitable and generic categorization of emotions and is cost-effective, the literature doesn't possess a publicly available knowledge base that can be directly applied to any emotion categorization-related task. This pushes us to create a knowledge base that can be used for emotion classification across domains, and ontology is often used for this purpose. In this study, we provide TONE, an emotion-based ontology that effectively creates an emotional hierarchy based on Dr. Gerrod Parrot's group of emotions. In addition to ontology development, we introduce a semi-automated vocabulary construction process to generate a detailed collection of terms for emotions at each tier of the hierarchy. We also demonstrate automated methods for establishing three sorts of dependencies in order to develop linkages between different emotions. Our human and automatic evaluation results show the ontology's quality. Furthermore, we describe three distinct use cases that demonstrate the applicability of our ontology.
Empathic Conversations: A Multi-level Dataset of Contextualized Conversations
Empathy is a cognitive and emotional reaction to an observed situation of others. Empathy has recently attracted interest because it has numerous applications in psychology and AI, but it is unclear how different forms of empathy (e.g., self-report vs counterpart other-report, concern vs. distress) interact with other affective phenomena or demographics like gender and age. To better understand this, we created the {\it Empathic Conversations} dataset of annotated negative, empathy-eliciting dialogues in which pairs of participants converse about news articles. People differ in their perception of the empathy of others. These differences are associated with certain characteristics such as personality and demographics. Hence, we collected detailed characterization of the participants' traits, their self-reported empathetic response to news articles, their conversational partner other-report, and turn-by-turn third-party assessments of the level of self-disclosure, emotion, and empathy expressed. This dataset is the first to present empathy in multiple forms along with personal distress, emotion, personality characteristics, and person-level demographic information. We present baseline models for predicting some of these features from conversations.
UniMSE: Towards Unified Multimodal Sentiment Analysis and Emotion Recognition
Multimodal sentiment analysis (MSA) and emotion recognition in conversation (ERC) are key research topics for computers to understand human behaviors. From a psychological perspective, emotions are the expression of affect or feelings during a short period, while sentiments are formed and held for a longer period. However, most existing works study sentiment and emotion separately and do not fully exploit the complementary knowledge behind the two. In this paper, we propose a multimodal sentiment knowledge-sharing framework (UniMSE) that unifies MSA and ERC tasks from features, labels, and models. We perform modality fusion at the syntactic and semantic levels and introduce contrastive learning between modalities and samples to better capture the difference and consistency between sentiments and emotions. Experiments on four public benchmark datasets, MOSI, MOSEI, MELD, and IEMOCAP, demonstrate the effectiveness of the proposed method and achieve consistent improvements compared with state-of-the-art methods.
Enhancing Emotion Recognition in Conversation through Emotional Cross-Modal Fusion and Inter-class Contrastive Learning
The purpose of emotion recognition in conversation (ERC) is to identify the emotion category of an utterance based on contextual information. Previous ERC methods relied on simple connections for cross-modal fusion and ignored the information differences between modalities, resulting in the model being unable to focus on modality-specific emotional information. At the same time, the shared information between modalities was not processed to generate emotions. Information redundancy problem. To overcome these limitations, we propose a cross-modal fusion emotion prediction network based on vector connections. The network mainly includes two stages: the multi-modal feature fusion stage based on connection vectors and the emotion classification stage based on fused features. Furthermore, we design a supervised inter-class contrastive learning module based on emotion labels. Experimental results confirm the effectiveness of the proposed method, demonstrating excellent performance on the IEMOCAP and MELD datasets.
HSEmotion Team at the 6th ABAW Competition: Facial Expressions, Valence-Arousal and Emotion Intensity Prediction
This article presents our results for the sixth Affective Behavior Analysis in-the-wild (ABAW) competition. To improve the trustworthiness of facial analysis, we study the possibility of using pre-trained deep models that extract reliable emotional features without the need to fine-tune the neural networks for a downstream task. In particular, we introduce several lightweight models based on MobileViT, MobileFaceNet, EfficientNet, and DDAMFN architectures trained in multi-task scenarios to recognize facial expressions, valence, and arousal on static photos. These neural networks extract frame-level features fed into a simple classifier, e.g., linear feed-forward neural network, to predict emotion intensity, compound expressions, action units, facial expressions, and valence/arousal. Experimental results for five tasks from the sixth ABAW challenge demonstrate that our approach lets us significantly improve quality metrics on validation sets compared to existing non-ensemble techniques.
Adapting General Disentanglement-Based Speaker Anonymization for Enhanced Emotion Preservation
A general disentanglement-based speaker anonymization system typically separates speech into content, speaker, and prosody features using individual encoders. This paper explores how to adapt such a system when a new speech attribute, for example, emotion, needs to be preserved to a greater extent. While existing systems are good at anonymizing speaker embeddings, they are not designed to preserve emotion. Two strategies for this are examined. First, we show that integrating emotion embeddings from a pre-trained emotion encoder can help preserve emotional cues, even though this approach slightly compromises privacy protection. Alternatively, we propose an emotion compensation strategy as a post-processing step applied to anonymized speaker embeddings. This conceals the original speaker's identity and reintroduces the emotional traits lost during speaker embedding anonymization. Specifically, we model the emotion attribute using support vector machines to learn separate boundaries for each emotion. During inference, the original speaker embedding is processed in two ways: one, by an emotion indicator to predict emotion and select the emotion-matched SVM accurately; and two, by a speaker anonymizer to conceal speaker characteristics. The anonymized speaker embedding is then modified along the corresponding SVM boundary towards an enhanced emotional direction to save the emotional cues. The proposed strategies are also expected to be useful for adapting a general disentanglement-based speaker anonymization system to preserve other target paralinguistic attributes, with potential for a range of downstream tasks.
Knowledge-enhanced Mixed-initiative Dialogue System for Emotional Support Conversations
Unlike empathetic dialogues, the system in emotional support conversations (ESC) is expected to not only convey empathy for comforting the help-seeker, but also proactively assist in exploring and addressing their problems during the conversation. In this work, we study the problem of mixed-initiative ESC where the user and system can both take the initiative in leading the conversation. Specifically, we conduct a novel analysis on mixed-initiative ESC systems with a tailor-designed schema that divides utterances into different types with speaker roles and initiative types. Four emotional support metrics are proposed to evaluate the mixed-initiative interactions. The analysis reveals the necessity and challenges of building mixed-initiative ESC systems. In the light of this, we propose a knowledge-enhanced mixed-initiative framework (KEMI) for ESC, which retrieves actual case knowledge from a large-scale mental health knowledge graph for generating mixed-initiative responses. Experimental results on two ESC datasets show the superiority of KEMI in both content-preserving evaluation and mixed initiative related analyses.
Building a Large Scale Dataset for Image Emotion Recognition: The Fine Print and The Benchmark
Psychological research results have confirmed that people can have different emotional reactions to different visual stimuli. Several papers have been published on the problem of visual emotion analysis. In particular, attempts have been made to analyze and predict people's emotional reaction towards images. To this end, different kinds of hand-tuned features are proposed. The results reported on several carefully selected and labeled small image data sets have confirmed the promise of such features. While the recent successes of many computer vision related tasks are due to the adoption of Convolutional Neural Networks (CNNs), visual emotion analysis has not achieved the same level of success. This may be primarily due to the unavailability of confidently labeled and relatively large image data sets for visual emotion analysis. In this work, we introduce a new data set, which started from 3+ million weakly labeled images of different emotions and ended up 30 times as large as the current largest publicly available visual emotion data set. We hope that this data set encourages further research on visual emotion analysis. We also perform extensive benchmarking analyses on this large data set using the state of the art methods including CNNs.
Flexible Visual Recognition by Evidential Modeling of Confusion and Ignorance
In real-world scenarios, typical visual recognition systems could fail under two major causes, i.e., the misclassification between known classes and the excusable misbehavior on unknown-class images. To tackle these deficiencies, flexible visual recognition should dynamically predict multiple classes when they are unconfident between choices and reject making predictions when the input is entirely out of the training distribution. Two challenges emerge along with this novel task. First, prediction uncertainty should be separately quantified as confusion depicting inter-class uncertainties and ignorance identifying out-of-distribution samples. Second, both confusion and ignorance should be comparable between samples to enable effective decision-making. In this paper, we propose to model these two sources of uncertainty explicitly with the theory of Subjective Logic. Regarding recognition as an evidence-collecting process, confusion is then defined as conflicting evidence, while ignorance is the absence of evidence. By predicting Dirichlet concentration parameters for singletons, comprehensive subjective opinions, including confusion and ignorance, could be achieved via further evidence combinations. Through a series of experiments on synthetic data analysis, visual recognition, and open-set detection, we demonstrate the effectiveness of our methods in quantifying two sources of uncertainties and dealing with flexible recognition.
Emotional Speech-Driven Animation with Content-Emotion Disentanglement
To be widely adopted, 3D facial avatars must be animated easily, realistically, and directly from speech signals. While the best recent methods generate 3D animations that are synchronized with the input audio, they largely ignore the impact of emotions on facial expressions. Realistic facial animation requires lip-sync together with the natural expression of emotion. To that end, we propose EMOTE (Expressive Model Optimized for Talking with Emotion), which generates 3D talking-head avatars that maintain lip-sync from speech while enabling explicit control over the expression of emotion. To achieve this, we supervise EMOTE with decoupled losses for speech (i.e., lip-sync) and emotion. These losses are based on two key observations: (1) deformations of the face due to speech are spatially localized around the mouth and have high temporal frequency, whereas (2) facial expressions may deform the whole face and occur over longer intervals. Thus, we train EMOTE with a per-frame lip-reading loss to preserve the speech-dependent content, while supervising emotion at the sequence level. Furthermore, we employ a content-emotion exchange mechanism in order to supervise different emotions on the same audio, while maintaining the lip motion synchronized with the speech. To employ deep perceptual losses without getting undesirable artifacts, we devise a motion prior in the form of a temporal VAE. Due to the absence of high-quality aligned emotional 3D face datasets with speech, EMOTE is trained with 3D pseudo-ground-truth extracted from an emotional video dataset (i.e., MEAD). Extensive qualitative and perceptual evaluations demonstrate that EMOTE produces speech-driven facial animations with better lip-sync than state-of-the-art methods trained on the same data, while offering additional, high-quality emotional control.
Introducing CALMED: Multimodal Annotated Dataset for Emotion Detection in Children with Autism
Automatic Emotion Detection (ED) aims to build systems to identify users' emotions automatically. This field has the potential to enhance HCI, creating an individualised experience for the user. However, ED systems tend to perform poorly on people with Autism Spectrum Disorder (ASD). Hence, the need to create ED systems tailored to how people with autism express emotions. Previous works have created ED systems tailored for children with ASD but did not share the resulting dataset. Sharing annotated datasets is essential to enable the development of more advanced computer models for ED within the research community. In this paper, we describe our experience establishing a process to create a multimodal annotated dataset featuring children with a level 1 diagnosis of autism. In addition, we introduce CALMED (Children, Autism, Multimodal, Emotion, Detection), the resulting multimodal emotion detection dataset featuring children with autism aged 8-12. CALMED includes audio and video features extracted from recording files of study sessions with participants, together with annotations provided by their parents into four target classes. The generated dataset includes a total of 57,012 examples, with each example representing a time window of 200ms (0.2s). Our experience and methods described here, together with the dataset shared, aim to contribute to future research applications of affective computing in ASD, which has the potential to create systems to improve the lives of people with ASD.
Towards Emotional Support Dialog Systems
Emotional support is a crucial ability for many conversation scenarios, including social interactions, mental health support, and customer service chats. Following reasonable procedures and using various support skills can help to effectively provide support. However, due to the lack of a well-designed task and corpora of effective emotional support conversations, research on building emotional support into dialog systems remains untouched. In this paper, we define the Emotional Support Conversation (ESC) task and propose an ESC Framework, which is grounded on the Helping Skills Theory. We construct an Emotion Support Conversation dataset (ESConv) with rich annotation (especially support strategy) in a help-seeker and supporter mode. To ensure a corpus of high-quality conversations that provide examples of effective emotional support, we take extensive effort to design training tutorials for supporters and several mechanisms for quality control during data collection. Finally, we evaluate state-of-the-art dialog models with respect to the ability to provide emotional support. Our results show the importance of support strategies in providing effective emotional support and the utility of ESConv in training more emotional support systems.
CARE: Commonsense-Aware Emotional Response Generation with Latent Concepts
Rationality and emotion are two fundamental elements of humans. Endowing agents with rationality and emotion has been one of the major milestones in AI. However, in the field of conversational AI, most existing models only specialize in one aspect and neglect the other, which often leads to dull or unrelated responses. In this paper, we hypothesize that combining rationality and emotion into conversational agents can improve response quality. To test the hypothesis, we focus on one fundamental aspect of rationality, i.e., commonsense, and propose CARE, a novel model for commonsense-aware emotional response generation. Specifically, we first propose a framework to learn and construct commonsense-aware emotional latent concepts of the response given an input message and a desired emotion. We then propose three methods to collaboratively incorporate the latent concepts into response generation. Experimental results on two large-scale datasets support our hypothesis and show that our model can produce more accurate and commonsense-aware emotional responses and achieve better human ratings than state-of-the-art models that only specialize in one aspect.
Emotion-Aware Transformer Encoder for Empathetic Dialogue Generation
Modern day conversational agents are trained to emulate the manner in which humans communicate. To emotionally bond with the user, these virtual agents need to be aware of the affective state of the user. Transformers are the recent state of the art in sequence-to-sequence learning that involves training an encoder-decoder model with word embeddings from utterance-response pairs. We propose an emotion-aware transformer encoder for capturing the emotional quotient in the user utterance in order to generate human-like empathetic responses. The contributions of our paper are as follows: 1) An emotion detector module trained on the input utterances determines the affective state of the user in the initial phase 2) A novel transformer encoder is proposed that adds and normalizes the word embedding with emotion embedding thereby integrating the semantic and affective aspects of the input utterance 3) The encoder and decoder stacks belong to the Transformer-XL architecture which is the recent state of the art in language modeling. Experimentation on the benchmark Facebook AI empathetic dialogue dataset confirms the efficacy of our model from the higher BLEU-4 scores achieved for the generated responses as compared to existing methods. Emotionally intelligent virtual agents are now a reality and inclusion of affect as a modality in all human-machine interfaces is foreseen in the immediate future.
MTP: A Dataset for Multi-Modal Turning Points in Casual Conversations
Detecting critical moments, such as emotional outbursts or changes in decisions during conversations, is crucial for understanding shifts in human behavior and their consequences. Our work introduces a novel problem setting focusing on these moments as turning points (TPs), accompanied by a meticulously curated, high-consensus, human-annotated multi-modal dataset. We provide precise timestamps, descriptions, and visual-textual evidence high-lighting changes in emotions, behaviors, perspectives, and decisions at these turning points. We also propose a framework, TPMaven, utilizing state-of-the-art vision-language models to construct a narrative from the videos and large language models to classify and detect turning points in our multi-modal dataset. Evaluation results show that TPMaven achieves an F1-score of 0.88 in classification and 0.61 in detection, with additional explanations aligning with human expectations.
WEARS: Wearable Emotion AI with Real-time Sensor data
Emotion prediction is the field of study to understand human emotions. Existing methods focus on modalities like text, audio, facial expressions, etc., which could be private to the user. Emotion can be derived from the subject's psychological data as well. Various approaches that employ combinations of physiological sensors for emotion recognition have been proposed. Yet, not all sensors are simple to use and handy for individuals in their daily lives. Thus, we propose a system to predict user emotion using smartwatch sensors. We design a framework to collect ground truth in real-time utilizing a mix of English and regional language-based videos to invoke emotions in participants and collect the data. Further, we modeled the problem as binary classification due to the limited dataset size and experimented with multiple machine-learning models. We also did an ablation study to understand the impact of features including Heart Rate, Accelerometer, and Gyroscope sensor data on mood. From the experimental results, Multi-Layer Perceptron has shown a maximum accuracy of 93.75 percent for pleasant-unpleasant (high/low valence classification) moods.
nicolay-r at SemEval-2024 Task 3: Using Flan-T5 for Reasoning Emotion Cause in Conversations with Chain-of-Thought on Emotion States
Emotion expression is one of the essential traits of conversations. It may be self-related or caused by another speaker. The variety of reasons may serve as a source of the further emotion causes: conversation history, speaker's emotional state, etc. Inspired by the most recent advances in Chain-of-Thought, in this work, we exploit the existing three-hop reasoning approach (THOR) to perform large language model instruction-tuning for answering: emotion states (THOR-state), and emotion caused by one speaker to the other (THOR-cause). We equip THOR-cause with the reasoning revision (rr) for devising a reasoning path in fine-tuning. In particular, we rely on the annotated speaker emotion states to revise reasoning path. Our final submission, based on Flan-T5-base (250M) and the rule-based span correction technique, preliminary tuned with THOR-state and fine-tuned with THOR-cause-rr on competition training data, results in 3rd and 4th places (F1-proportional) and 5th place (F1-strict) among 15 participating teams. Our THOR implementation fork is publicly available: https://github.com/nicolay-r/THOR-ECAC
HiCMAE: Hierarchical Contrastive Masked Autoencoder for Self-Supervised Audio-Visual Emotion Recognition
Audio-Visual Emotion Recognition (AVER) has garnered increasing attention in recent years for its critical role in creating emotion-ware intelligent machines. Previous efforts in this area are dominated by the supervised learning paradigm. Despite significant progress, supervised learning is meeting its bottleneck due to the longstanding data scarcity issue in AVER. Motivated by recent advances in self-supervised learning, we propose Hierarchical Contrastive Masked Autoencoder (HiCMAE), a novel self-supervised framework that leverages large-scale self-supervised pre-training on vast unlabeled audio-visual data to promote the advancement of AVER. Following prior arts in self-supervised audio-visual representation learning, HiCMAE adopts two primary forms of self-supervision for pre-training, namely masked data modeling and contrastive learning. Unlike them which focus exclusively on top-layer representations while neglecting explicit guidance of intermediate layers, HiCMAE develops a three-pronged strategy to foster hierarchical audio-visual feature learning and improve the overall quality of learned representations. To verify the effectiveness of HiCMAE, we conduct extensive experiments on 9 datasets covering both categorical and dimensional AVER tasks. Experimental results show that our method significantly outperforms state-of-the-art supervised and self-supervised audio-visual methods, which indicates that HiCMAE is a powerful audio-visual emotion representation learner. Codes and models will be publicly available at https://github.com/sunlicai/HiCMAE.
StimuVAR: Spatiotemporal Stimuli-aware Video Affective Reasoning with Multimodal Large Language Models
Predicting and reasoning how a video would make a human feel is crucial for developing socially intelligent systems. Although Multimodal Large Language Models (MLLMs) have shown impressive video understanding capabilities, they tend to focus more on the semantic content of videos, often overlooking emotional stimuli. Hence, most existing MLLMs fall short in estimating viewers' emotional reactions and providing plausible explanations. To address this issue, we propose StimuVAR, a spatiotemporal Stimuli-aware framework for Video Affective Reasoning (VAR) with MLLMs. StimuVAR incorporates a two-level stimuli-aware mechanism: frame-level awareness and token-level awareness. Frame-level awareness involves sampling video frames with events that are most likely to evoke viewers' emotions. Token-level awareness performs tube selection in the token space to make the MLLM concentrate on emotion-triggered spatiotemporal regions. Furthermore, we create VAR instruction data to perform affective training, steering MLLMs' reasoning strengths towards emotional focus and thereby enhancing their affective reasoning ability. To thoroughly assess the effectiveness of VAR, we provide a comprehensive evaluation protocol with extensive metrics. StimuVAR is the first MLLM-based method for viewer-centered VAR. Experiments demonstrate its superiority in understanding viewers' emotional responses to videos and providing coherent and insightful explanations.
CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic Response Generation
Empathetic conversation is psychologically supposed to be the result of conscious alignment and interaction between the cognition and affection of empathy. However, existing empathetic dialogue models usually consider only the affective aspect or treat cognition and affection in isolation, which limits the capability of empathetic response generation. In this work, we propose the CASE model for empathetic dialogue generation. It first builds upon a commonsense cognition graph and an emotional concept graph and then aligns the user's cognition and affection at both the coarse-grained and fine-grained levels. Through automatic and manual evaluation, we demonstrate that CASE outperforms state-of-the-art baselines of empathetic dialogues and can generate more empathetic and informative responses.
BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages
People worldwide use language in subtle and complex ways to express emotions. While emotion recognition -- an umbrella term for several NLP tasks -- significantly impacts different applications in NLP and other fields, most work in the area is focused on high-resource languages. Therefore, this has led to major disparities in research and proposed solutions, especially for low-resource languages that suffer from the lack of high-quality datasets. In this paper, we present BRIGHTER-- a collection of multilabeled emotion-annotated datasets in 28 different languages. BRIGHTER covers predominantly low-resource languages from Africa, Asia, Eastern Europe, and Latin America, with instances from various domains annotated by fluent speakers. We describe the data collection and annotation processes and the challenges of building these datasets. Then, we report different experimental results for monolingual and crosslingual multi-label emotion identification, as well as intensity-level emotion recognition. We investigate results with and without using LLMs and analyse the large variability in performance across languages and text domains. We show that BRIGHTER datasets are a step towards bridging the gap in text-based emotion recognition and discuss their impact and utility.
Aligning Language Models Using Follow-up Likelihood as Reward Signal
In natural human-to-human conversations, participants often receive feedback signals from one another based on their follow-up reactions. These reactions can include verbal responses, facial expressions, changes in emotional state, and other non-verbal cues. Similarly, in human-machine interactions, the machine can leverage the user's follow-up utterances as feedback signals to assess whether it has appropriately addressed the user's request. Therefore, we propose using the likelihood of follow-up utterances as rewards to differentiate preferred responses from less favored ones, without relying on human or commercial LLM-based preference annotations. Our proposed reward mechanism, ``Follow-up Likelihood as Reward" (FLR), matches the performance of strong reward models trained on large-scale human or GPT-4 annotated data on 8 pairwise-preference and 4 rating-based benchmarks. Building upon the FLR mechanism, we propose to automatically mine preference data from the online generations of a base policy model. The preference data are subsequently used to boost the helpfulness of the base model through direct alignment from preference (DAP) methods, such as direct preference optimization (DPO). Lastly, we demonstrate that fine-tuning the language model that provides follow-up likelihood with natural language feedback significantly enhances FLR's performance on reward modeling benchmarks and effectiveness in aligning the base policy model's helpfulness.
Talk With Human-like Agents: Empathetic Dialogue Through Perceptible Acoustic Reception and Reaction
Large Language Model (LLM)-enhanced agents become increasingly prevalent in Human-AI communication, offering vast potential from entertainment to professional domains. However, current multi-modal dialogue systems overlook the acoustic information present in speech, which is crucial for understanding human communication nuances. This oversight can lead to misinterpretations of speakers' intentions, resulting in inconsistent or even contradictory responses within dialogues. To bridge this gap, in this paper, we propose PerceptiveAgent, an empathetic multi-modal dialogue system designed to discern deeper or more subtle meanings beyond the literal interpretations of words through the integration of speech modality perception. Employing LLMs as a cognitive core, PerceptiveAgent perceives acoustic information from input speech and generates empathetic responses based on speaking styles described in natural language. Experimental results indicate that PerceptiveAgent excels in contextual understanding by accurately discerning the speakers' true intentions in scenarios where the linguistic meaning is either contrary to or inconsistent with the speaker's true feelings, producing more nuanced and expressive spoken dialogues. Code is publicly available at: https://github.com/Haoqiu-Yan/PerceptiveAgent.
Cluster-level pseudo-labelling for source-free cross-domain facial expression recognition
Automatically understanding emotions from visual data is a fundamental task for human behaviour understanding. While models devised for Facial Expression Recognition (FER) have demonstrated excellent performances on many datasets, they often suffer from severe performance degradation when trained and tested on different datasets due to domain shift. In addition, as face images are considered highly sensitive data, the accessibility to large-scale datasets for model training is often denied. In this work, we tackle the above-mentioned problems by proposing the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for FER. Our method exploits self-supervised pretraining to learn good feature representations from the target data and proposes a novel and robust cluster-level pseudo-labelling strategy that accounts for in-cluster statistics. We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER, and is on par with methods addressing FER in the UDA setting.
SweetieChat: A Strategy-Enhanced Role-playing Framework for Diverse Scenarios Handling Emotional Support Agent
Large Language Models (LLMs) have demonstrated promising potential in providing empathetic support during interactions. However, their responses often become verbose or overly formulaic, failing to adequately address the diverse emotional support needs of real-world scenarios. To tackle this challenge, we propose an innovative strategy-enhanced role-playing framework, designed to simulate authentic emotional support conversations. Specifically, our approach unfolds in two steps: (1) Strategy-Enhanced Role-Playing Interactions, which involve three pivotal roles -- Seeker, Strategy Counselor, and Supporter -- engaging in diverse scenarios to emulate real-world interactions and promote a broader range of dialogues; and (2) Emotional Support Agent Training, achieved through fine-tuning LLMs using our specially constructed dataset. Within this framework, we develop the ServeForEmo dataset, comprising an extensive collection of 3.7K+ multi-turn dialogues and 62.8K+ utterances. We further present SweetieChat, an emotional support agent capable of handling diverse open-domain scenarios. Extensive experiments and human evaluations confirm the framework's effectiveness in enhancing emotional support, highlighting its unique ability to provide more nuanced and tailored assistance.
Multimodal Emotion Recognition with Modality-Pairwise Unsupervised Contrastive Loss
Emotion recognition is involved in several real-world applications. With an increase in available modalities, automatic understanding of emotions is being performed more accurately. The success in Multimodal Emotion Recognition (MER), primarily relies on the supervised learning paradigm. However, data annotation is expensive, time-consuming, and as emotion expression and perception depends on several factors (e.g., age, gender, culture) obtaining labels with a high reliability is hard. Motivated by these, we focus on unsupervised feature learning for MER. We consider discrete emotions, and as modalities text, audio and vision are used. Our method, as being based on contrastive loss between pairwise modalities, is the first attempt in MER literature. Our end-to-end feature learning approach has several differences (and advantages) compared to existing MER methods: i) it is unsupervised, so the learning is lack of data labelling cost; ii) it does not require data spatial augmentation, modality alignment, large number of batch size or epochs; iii) it applies data fusion only at inference; and iv) it does not require backbones pre-trained on emotion recognition task. The experiments on benchmark datasets show that our method outperforms several baseline approaches and unsupervised learning methods applied in MER. Particularly, it even surpasses a few supervised MER state-of-the-art.
Revisiting Multi-modal Emotion Learning with Broad State Space Models and Probability-guidance Fusion
Multi-modal Emotion Recognition in Conversation (MERC) has received considerable attention in various fields, e.g., human-computer interaction and recommendation systems. Most existing works perform feature disentanglement and fusion to extract emotional contextual information from multi-modal features and emotion classification. After revisiting the characteristic of MERC, we argue that long-range contextual semantic information should be extracted in the feature disentanglement stage and the inter-modal semantic information consistency should be maximized in the feature fusion stage. Inspired by recent State Space Models (SSMs), Mamba can efficiently model long-distance dependencies. Therefore, in this work, we fully consider the above insights to further improve the performance of MERC. Specifically, on the one hand, in the feature disentanglement stage, we propose a Broad Mamba, which does not rely on a self-attention mechanism for sequence modeling, but uses state space models to compress emotional representation, and utilizes broad learning systems to explore the potential data distribution in broad space. Different from previous SSMs, we design a bidirectional SSM convolution to extract global context information. On the other hand, we design a multi-modal fusion strategy based on probability guidance to maximize the consistency of information between modalities. Experimental results show that the proposed method can overcome the computational and memory limitations of Transformer when modeling long-distance contexts, and has great potential to become a next-generation general architecture in MERC.
EmoFace: Audio-driven Emotional 3D Face Animation
Audio-driven emotional 3D face animation aims to generate emotionally expressive talking heads with synchronized lip movements. However, previous research has often overlooked the influence of diverse emotions on facial expressions or proved unsuitable for driving MetaHuman models. In response to this deficiency, we introduce EmoFace, a novel audio-driven methodology for creating facial animations with vivid emotional dynamics. Our approach can generate facial expressions with multiple emotions, and has the ability to generate random yet natural blinks and eye movements, while maintaining accurate lip synchronization. We propose independent speech encoders and emotion encoders to learn the relationship between audio, emotion and corresponding facial controller rigs, and finally map into the sequence of controller values. Additionally, we introduce two post-processing techniques dedicated to enhancing the authenticity of the animation, particularly in blinks and eye movements. Furthermore, recognizing the scarcity of emotional audio-visual data suitable for MetaHuman model manipulation, we contribute an emotional audio-visual dataset and derive control parameters for each frames. Our proposed methodology can be applied in producing dialogues animations of non-playable characters (NPCs) in video games, and driving avatars in virtual reality environments. Our further quantitative and qualitative experiments, as well as an user study comparing with existing researches show that our approach demonstrates superior results in driving 3D facial models. The code and sample data are available at https://github.com/SJTU-Lucy/EmoFace.
LEIA: Linguistic Embeddings for the Identification of Affect
The wealth of text data generated by social media has enabled new kinds of analysis of emotions with language models. These models are often trained on small and costly datasets of text annotations produced by readers who guess the emotions expressed by others in social media posts. This affects the quality of emotion identification methods due to training data size limitations and noise in the production of labels used in model development. We present LEIA, a model for emotion identification in text that has been trained on a dataset of more than 6 million posts with self-annotated emotion labels for happiness, affection, sadness, anger, and fear. LEIA is based on a word masking method that enhances the learning of emotion words during model pre-training. LEIA achieves macro-F1 values of approximately 73 on three in-domain test datasets, outperforming other supervised and unsupervised methods in a strong benchmark that shows that LEIA generalizes across posts, users, and time periods. We further perform an out-of-domain evaluation on five different datasets of social media and other sources, showing LEIA's robust performance across media, data collection methods, and annotation schemes. Our results show that LEIA generalizes its classification of anger, happiness, and sadness beyond the domain it was trained on. LEIA can be applied in future research to provide better identification of emotions in text from the perspective of the writer. The models produced for this article are publicly available at https://huggingface.co./LEIA
DREAM-Talk: Diffusion-based Realistic Emotional Audio-driven Method for Single Image Talking Face Generation
The generation of emotional talking faces from a single portrait image remains a significant challenge. The simultaneous achievement of expressive emotional talking and accurate lip-sync is particularly difficult, as expressiveness is often compromised for the accuracy of lip-sync. As widely adopted by many prior works, the LSTM network often fails to capture the subtleties and variations of emotional expressions. To address these challenges, we introduce DREAM-Talk, a two-stage diffusion-based audio-driven framework, tailored for generating diverse expressions and accurate lip-sync concurrently. In the first stage, we propose EmoDiff, a novel diffusion module that generates diverse highly dynamic emotional expressions and head poses in accordance with the audio and the referenced emotion style. Given the strong correlation between lip motion and audio, we then refine the dynamics with enhanced lip-sync accuracy using audio features and emotion style. To this end, we deploy a video-to-video rendering module to transfer the expressions and lip motions from our proxy 3D avatar to an arbitrary portrait. Both quantitatively and qualitatively, DREAM-Talk outperforms state-of-the-art methods in terms of expressiveness, lip-sync accuracy and perceptual quality.
Shaking the foundations: delusions in sequence models for interaction and control
The recent phenomenal success of language models has reinvigorated machine learning research, and large sequence models such as transformers are being applied to a variety of domains. One important problem class that has remained relatively elusive however is purposeful adaptive behavior. Currently there is a common perception that sequence models "lack the understanding of the cause and effect of their actions" leading them to draw incorrect inferences due to auto-suggestive delusions. In this report we explain where this mismatch originates, and show that it can be resolved by treating actions as causal interventions. Finally, we show that in supervised learning, one can teach a system to condition or intervene on data by training with factual and counterfactual error signals respectively.
Efficient Emotional Adaptation for Audio-Driven Talking-Head Generation
Audio-driven talking-head synthesis is a popular research topic for virtual human-related applications. However, the inflexibility and inefficiency of existing methods, which necessitate expensive end-to-end training to transfer emotions from guidance videos to talking-head predictions, are significant limitations. In this work, we propose the Emotional Adaptation for Audio-driven Talking-head (EAT) method, which transforms emotion-agnostic talking-head models into emotion-controllable ones in a cost-effective and efficient manner through parameter-efficient adaptations. Our approach utilizes a pretrained emotion-agnostic talking-head transformer and introduces three lightweight adaptations (the Deep Emotional Prompts, Emotional Deformation Network, and Emotional Adaptation Module) from different perspectives to enable precise and realistic emotion controls. Our experiments demonstrate that our approach achieves state-of-the-art performance on widely-used benchmarks, including LRW and MEAD. Additionally, our parameter-efficient adaptations exhibit remarkable generalization ability, even in scenarios where emotional training videos are scarce or nonexistent. Project website: https://yuangan.github.io/eat/
Hallucinations or Attention Misdirection? The Path to Strategic Value Extraction in Business Using Large Language Models
Large Language Models with transformer architecture have revolutionized the domain of text generation, setting unprecedented benchmarks. Despite their impressive capabilities, LLMs have been criticized for generating outcomes that deviate from factual accuracy or display logical inconsistencies, phenomena commonly referred to as hallucinations. This term, however, has often been misapplied to any results deviating from the instructor's expectations, which this paper defines as attention misdirection rather than true hallucinations. Understanding the distinction between hallucinations and attention misdirection becomes increasingly relevant in business contexts, where the ramifications of such errors can significantly impact the value extraction from these inherently pre-trained models. This paper highlights the best practices of the PGI, Persona, Grouping, and Intelligence, method, a strategic framework that achieved a remarkable error rate of only 3,15 percent across 4,000 responses generated by GPT in response to a real business challenge. It emphasizes that by equipping experimentation with knowledge, businesses can unlock opportunities for innovation through the use of these natively pre-trained models. This reinforces the notion that strategic application grounded in a skilled team can maximize the benefits of emergent technologies such as the LLMs.
nEMO: Dataset of Emotional Speech in Polish
Speech emotion recognition has become increasingly important in recent years due to its potential applications in healthcare, customer service, and personalization of dialogue systems. However, a major issue in this field is the lack of datasets that adequately represent basic emotional states across various language families. As datasets covering Slavic languages are rare, there is a need to address this research gap. This paper presents the development of nEMO, a novel corpus of emotional speech in Polish. The dataset comprises over 3 hours of samples recorded with the participation of nine actors portraying six emotional states: anger, fear, happiness, sadness, surprise, and a neutral state. The text material used was carefully selected to represent the phonetics of the Polish language adequately. The corpus is freely available under the terms of a Creative Commons license (CC BY-NC-SA 4.0).
Don't Lose Yourself! Empathetic Response Generation via Explicit Self-Other Awareness
As a critical step to achieve human-like chatbots, empathetic response generation has attained increasing interests. Previous attempts are incomplete and not sufficient enough to elicit empathy because they only focus on the initial aspect of empathy to automatically mimic the feelings and thoughts of the user via other-awareness. However, they ignore to maintain and take the own views of the system into account, which is a crucial process to achieve the empathy called self-other awareness. To this end, we propose to generate Empathetic response with explicit Self-Other Awareness (EmpSOA). Specifically, three stages, self-other differentiation, self-other modulation and self-other generation, are devised to clearly maintain, regulate and inject the self-other aware information into the process of empathetic response generation. Both automatic and human evaluations on the benchmark dataset demonstrate the superiority of EmpSOA to generate more empathetic responses.
Evaluation and Mitigation of Agnosia in Multimodal Large Language Models
While Multimodal Large Language Models (MLLMs) are widely used for a variety of vision-language tasks, one observation is that they sometimes misinterpret visual inputs or fail to follow textual instructions even in straightforward cases, leading to irrelevant responses, mistakes, and ungrounded claims. This observation is analogous to a phenomenon in neuropsychology known as Agnosia, an inability to correctly process sensory modalities and recognize things (e.g., objects, colors, relations). In our study, we adapt this similar concept to define "agnosia in MLLMs", and our goal is to comprehensively evaluate and mitigate such agnosia in MLLMs. Inspired by the diagnosis and treatment process in neuropsychology, we propose a novel framework EMMA (Evaluation and Mitigation of Multimodal Agnosia). In EMMA, we develop an evaluation module that automatically creates fine-grained and diverse visual question answering examples to assess the extent of agnosia in MLLMs comprehensively. We also develop a mitigation module to reduce agnosia in MLLMs through multimodal instruction tuning on fine-grained conversations. To verify the effectiveness of our framework, we evaluate and analyze agnosia in seven state-of-the-art MLLMs using 9K test samples. The results reveal that most of them exhibit agnosia across various aspects and degrees. We further develop a fine-grained instruction set and tune MLLMs to mitigate agnosia, which led to notable improvement in accuracy.
Emotion Classification In Software Engineering Texts: A Comparative Analysis of Pre-trained Transformers Language Models
Emotion recognition in software engineering texts is critical for understanding developer expressions and improving collaboration. This paper presents a comparative analysis of state-of-the-art Pre-trained Language Models (PTMs) for fine-grained emotion classification on two benchmark datasets from GitHub and Stack Overflow. We evaluate six transformer models - BERT, RoBERTa, ALBERT, DeBERTa, CodeBERT and GraphCodeBERT against the current best-performing tool SEntiMoji. Our analysis reveals consistent improvements ranging from 1.17\% to 16.79\% in terms of macro-averaged and micro-averaged F1 scores, with general domain models outperforming specialized ones. To further enhance PTMs, we incorporate polarity features in attention layer during training, demonstrating additional average gains of 1.0\% to 10.23\% over baseline PTMs approaches. Our work provides strong evidence for the advancements afforded by PTMs in recognizing nuanced emotions like Anger, Love, Fear, Joy, Sadness, and Surprise in software engineering contexts. Through comprehensive benchmarking and error analysis, we also outline scope for improvements to address contextual gaps.
COGMEN: COntextualized GNN based Multimodal Emotion recognitioN
Emotions are an inherent part of human interactions, and consequently, it is imperative to develop AI systems that understand and recognize human emotions. During a conversation involving various people, a person's emotions are influenced by the other speaker's utterances and their own emotional state over the utterances. In this paper, we propose COntextualized Graph Neural Network based Multimodal Emotion recognitioN (COGMEN) system that leverages local information (i.e., inter/intra dependency between speakers) and global information (context). The proposed model uses Graph Neural Network (GNN) based architecture to model the complex dependencies (local and global information) in a conversation. Our model gives state-of-the-art (SOTA) results on IEMOCAP and MOSEI datasets, and detailed ablation experiments show the importance of modeling information at both levels.
Towards More Accurate Prediction of Human Empathy and Emotion in Text and Multi-turn Conversations by Combining Advanced NLP, Transformers-based Networks, and Linguistic Methodologies
Based on the WASSA 2022 Shared Task on Empathy Detection and Emotion Classification, we predict the level of empathic concern and personal distress displayed in essays. For the first stage of this project we implemented a Feed-Forward Neural Network using sentence-level embeddings as features. We experimented with four different embedding models for generating the inputs to the neural network. The subsequent stage builds upon the previous work and we have implemented three types of revisions. The first revision focuses on the enhancements to the model architecture and the training approach. The second revision focuses on handling class imbalance using stratified data sampling. The third revision focuses on leveraging lexical resources, where we apply four different resources to enrich the features associated with the dataset. During the final stage of this project, we have created the final end-to-end system for the primary task using an ensemble of models to revise primary task performance. Additionally, as part of the final stage, these approaches have been adapted to the WASSA 2023 Shared Task on Empathy Emotion and Personality Detection in Interactions, in which the empathic concern, emotion polarity, and emotion intensity in dyadic text conversations are predicted.
GReFEL: Geometry-Aware Reliable Facial Expression Learning under Bias and Imbalanced Data Distribution
Reliable facial expression learning (FEL) involves the effective learning of distinctive facial expression characteristics for more reliable, unbiased and accurate predictions in real-life settings. However, current systems struggle with FEL tasks because of the variance in people's facial expressions due to their unique facial structures, movements, tones, and demographics. Biased and imbalanced datasets compound this challenge, leading to wrong and biased prediction labels. To tackle these, we introduce GReFEL, leveraging Vision Transformers and a facial geometry-aware anchor-based reliability balancing module to combat imbalanced data distributions, bias, and uncertainty in facial expression learning. Integrating local and global data with anchors that learn different facial data points and structural features, our approach adjusts biased and mislabeled emotions caused by intra-class disparity, inter-class similarity, and scale sensitivity, resulting in comprehensive, accurate, and reliable facial expression predictions. Our model outperforms current state-of-the-art methodologies, as demonstrated by extensive experiments on various datasets.
Att-HACK: An Expressive Speech Database with Social Attitudes
This paper presents Att-HACK, the first large database of acted speech with social attitudes. Available databases of expressive speech are rare and very often restricted to the primary emotions: anger, joy, sadness, fear. This greatly limits the scope of the research on expressive speech. Besides, a fundamental aspect of speech prosody is always ignored and missing from such databases: its variety, i.e. the possibility to repeat an utterance while varying its prosody. This paper represents a first attempt to widen the scope of expressivity in speech, by providing a database of acted speech with social attitudes: friendly, seductive, dominant, and distant. The proposed database comprises 25 speakers interpreting 100 utterances in 4 social attitudes, with 3-5 repetitions each per attitude for a total of around 30 hours of speech. The Att-HACK is freely available for academic research under a Creative Commons Licence.
REDAffectiveLM: Leveraging Affect Enriched Embedding and Transformer-based Neural Language Model for Readers' Emotion Detection
Technological advancements in web platforms allow people to express and share emotions towards textual write-ups written and shared by others. This brings about different interesting domains for analysis; emotion expressed by the writer and emotion elicited from the readers. In this paper, we propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM. Within state-of-the-art NLP tasks, it is well understood that utilizing context-specific representations from transformer-based pre-trained language models helps achieve improved performance. Within this affective computing task, we explore how incorporating affective information can further enhance performance. Towards this, we leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention. For empirical evaluation, we procure a new dataset REN-20k, besides using RENh-4k and SemEval-2007. We evaluate the performance of our REDAffectiveLM rigorously across these datasets, against a vast set of state-of-the-art baselines, where our model consistently outperforms baselines and obtains statistically significant results. Our results establish that utilizing affect enriched representation along with context-specific representation within a neural architecture can considerably enhance readers' emotion detection. Since the impact of affect enrichment specifically in readers' emotion detection isn't well explored, we conduct a detailed analysis over affect enriched Bi-LSTM+Attention using qualitative and quantitative model behavior evaluation techniques. We observe that compared to conventional semantic embedding, affect enriched embedding increases ability of the network to effectively identify and assign weightage to key terms responsible for readers' emotion detection.
Facial Emotion Recognition: A multi-task approach using deep learning
Facial Emotion Recognition is an inherently difficult problem, due to vast differences in facial structures of individuals and ambiguity in the emotion displayed by a person. Recently, a lot of work is being done in the field of Facial Emotion Recognition, and the performance of the CNNs for this task has been inferior compared to the results achieved by CNNs in other fields like Object detection, Facial recognition etc. In this paper, we propose a multi-task learning algorithm, in which a single CNN detects gender, age and race of the subject along with their emotion. We validate this proposed methodology using two datasets containing real-world images. The results show that this approach is significantly better than the current State of the art algorithms for this task.
OpenOmni: Large Language Models Pivot Zero-shot Omnimodal Alignment across Language with Real-time Self-Aware Emotional Speech Synthesis
Recent advancements in omnimodal learning have been achieved in understanding and generation across images, text, and speech, though mainly within proprietary models. Limited omnimodal datasets and the inherent challenges associated with real-time emotional speech generation have hindered open-source progress. To address these issues, we propose openomni, a two-stage training method combining omnimodal alignment and speech generation to develop a state-of-the-art omnimodal large language model. In the alignment phase, a pre-trained speech model is further trained on text-image tasks to generalize from vision to speech in a (near) zero-shot manner, outperforming models trained on tri-modal datasets. In the speech generation phase, a lightweight decoder facilitates real-time emotional speech through training on speech tasks and preference learning. Experiments demonstrate that openomni consistently improves across omnimodal, vision-language, and speech-language evaluations, enabling natural, emotion-rich dialogues and real-time emotional speech generation.
Detail-Enhanced Intra- and Inter-modal Interaction for Audio-Visual Emotion Recognition
Capturing complex temporal relationships between video and audio modalities is vital for Audio-Visual Emotion Recognition (AVER). However, existing methods lack attention to local details, such as facial state changes between video frames, which can reduce the discriminability of features and thus lower recognition accuracy. In this paper, we propose a Detail-Enhanced Intra- and Inter-modal Interaction network(DE-III) for AVER, incorporating several novel aspects. We introduce optical flow information to enrich video representations with texture details that better capture facial state changes. A fusion module integrates the optical flow estimation with the corresponding video frames to enhance the representation of facial texture variations. We also design attentive intra- and inter-modal feature enhancement modules to further improve the richness and discriminability of video and audio representations. A detailed quantitative evaluation shows that our proposed model outperforms all existing methods on three benchmark datasets for both concrete and continuous emotion recognition. To encourage further research and ensure replicability, we will release our full code upon acceptance.
TransESC: Smoothing Emotional Support Conversation via Turn-Level State Transition
Emotion Support Conversation (ESC) is an emerging and challenging task with the goal of reducing the emotional distress of people. Previous attempts fail to maintain smooth transitions between utterances in ESC because they ignore to grasp the fine-grained transition information at each dialogue turn. To solve this problem, we propose to take into account turn-level state Transitions of ESC (TransESC) from three perspectives, including semantics transition, strategy transition and emotion transition, to drive the conversation in a smooth and natural way. Specifically, we construct the state transition graph with a two-step way, named transit-then-interact, to grasp such three types of turn-level transition information. Finally, they are injected into the transition-aware decoder to generate more engaging responses. Both automatic and human evaluations on the benchmark dataset demonstrate the superiority of TransESC to generate more smooth and effective supportive responses. Our source code is available at https://github.com/circle-hit/TransESC.
BQA: Body Language Question Answering Dataset for Video Large Language Models
A large part of human communication relies on nonverbal cues such as facial expressions, eye contact, and body language. Unlike language or sign language, such nonverbal communication lacks formal rules, requiring complex reasoning based on commonsense understanding. Enabling current Video Large Language Models (VideoLLMs) to accurately interpret body language is a crucial challenge, as human unconscious actions can easily cause the model to misinterpret their intent. To address this, we propose a dataset, BQA, a body language question answering dataset, to validate whether the model can correctly interpret emotions from short clips of body language comprising 26 emotion labels of videos of body language. We evaluated various VideoLLMs on BQA and revealed that understanding body language is challenging, and our analyses of the wrong answers by VideoLLMs show that certain VideoLLMs made significantly biased answers depending on the age group and ethnicity of the individuals in the video. The dataset is available.
From Personas to Talks: Revisiting the Impact of Personas on LLM-Synthesized Emotional Support Conversations
The rapid advancement of Large Language Models (LLMs) has revolutionized the generation of emotional support conversations (ESC), offering scalable solutions with reduced costs and enhanced data privacy. This paper explores the role of personas in the creation of ESC by LLMs. Our research utilizes established psychological frameworks to measure and infuse persona traits into LLMs, which then generate dialogues in the emotional support scenario. We conduct extensive evaluations to understand the stability of persona traits in dialogues, examining shifts in traits post-generation and their impact on dialogue quality and strategy distribution. Experimental results reveal several notable findings: 1) LLMs can infer core persona traits, 2) subtle shifts in emotionality and extraversion occur, influencing the dialogue dynamics, and 3) the application of persona traits modifies the distribution of emotional support strategies, enhancing the relevance and empathetic quality of the responses. These findings highlight the potential of persona-driven LLMs in crafting more personalized, empathetic, and effective emotional support dialogues, which has significant implications for the future design of AI-driven emotional support systems.
Depression Detection and Analysis using Large Language Models on Textual and Audio-Visual Modalities
Depression has proven to be a significant public health issue, profoundly affecting the psychological well-being of individuals. If it remains undiagnosed, depression can lead to severe health issues, which can manifest physically and even lead to suicide. Generally, Diagnosing depression or any other mental disorder involves conducting semi-structured interviews alongside supplementary questionnaires, including variants of the Patient Health Questionnaire (PHQ) by Clinicians and mental health professionals. This approach places significant reliance on the experience and judgment of trained physicians, making the diagnosis susceptible to personal biases. Given that the underlying mechanisms causing depression are still being actively researched, physicians often face challenges in diagnosing and treating the condition, particularly in its early stages of clinical presentation. Recently, significant strides have been made in Artificial neural computing to solve problems involving text, image, and speech in various domains. Our analysis has aimed to leverage these state-of-the-art (SOTA) models in our experiments to achieve optimal outcomes leveraging multiple modalities. The experiments were performed on the Extended Distress Analysis Interview Corpus Wizard of Oz dataset (E-DAIC) corpus presented in the Audio/Visual Emotion Challenge (AVEC) 2019 Challenge. The proposed solutions demonstrate better results achieved by Proprietary and Open-source Large Language Models (LLMs), which achieved a Root Mean Square Error (RMSE) score of 3.98 on Textual Modality, beating the AVEC 2019 challenge baseline results and current SOTA regression analysis architectures. Additionally, the proposed solution achieved an accuracy of 71.43% in the classification task. The paper also includes a novel audio-visual multi-modal network that predicts PHQ-8 scores with an RMSE of 6.51.
Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT
Wider access to therapeutic care is one of the biggest challenges in mental health treatment. Due to institutional barriers, some people seeking mental health support have turned to large language models (LLMs) for personalized therapy, even though these models are largely unsanctioned and untested. We investigate the potential and limitations of using LLMs as providers of evidence-based therapy by using mixed methods clinical metrics. Using HELPERT, a prompt run on a large language model using the same process and training as a comparative group of peer counselors, we replicated publicly accessible mental health conversations rooted in Cognitive Behavioral Therapy (CBT) to compare session dynamics and counselor's CBT-based behaviors between original peer support sessions and their reconstructed HELPERT sessions. Two licensed, CBT-trained clinical psychologists evaluated the sessions using the Cognitive Therapy Rating Scale and provided qualitative feedback. Our findings show that the peer sessions are characterized by empathy, small talk, therapeutic alliance, and shared experiences but often exhibit therapist drift. Conversely, HELPERT reconstructed sessions exhibit minimal therapist drift and higher adherence to CBT methods but display a lack of collaboration, empathy, and cultural understanding. Through CTRS ratings and psychologists' feedback, we highlight the importance of human-AI collaboration for scalable mental health. Our work outlines the ethical implication of imparting human-like subjective qualities to LLMs in therapeutic settings, particularly the risk of deceptive empathy, which may lead to unrealistic patient expectations and potential harm.
EmotionLines: An Emotion Corpus of Multi-Party Conversations
Feeling emotion is a critical characteristic to distinguish people from machines. Among all the multi-modal resources for emotion detection, textual datasets are those containing the least additional information in addition to semantics, and hence are adopted widely for testing the developed systems. However, most of the textual emotional datasets consist of emotion labels of only individual words, sentences or documents, which makes it challenging to discuss the contextual flow of emotions. In this paper, we introduce EmotionLines, the first dataset with emotions labeling on all utterances in each dialogue only based on their textual content. Dialogues in EmotionLines are collected from Friends TV scripts and private Facebook messenger dialogues. Then one of seven emotions, six Ekman's basic emotions plus the neutral emotion, is labeled on each utterance by 5 Amazon MTurkers. A total of 29,245 utterances from 2,000 dialogues are labeled in EmotionLines. We also provide several strong baselines for emotion detection models on EmotionLines in this paper.
EmoTalk: Speech-Driven Emotional Disentanglement for 3D Face Animation
Speech-driven 3D face animation aims to generate realistic facial expressions that match the speech content and emotion. However, existing methods often neglect emotional facial expressions or fail to disentangle them from speech content. To address this issue, this paper proposes an end-to-end neural network to disentangle different emotions in speech so as to generate rich 3D facial expressions. Specifically, we introduce the emotion disentangling encoder (EDE) to disentangle the emotion and content in the speech by cross-reconstructed speech signals with different emotion labels. Then an emotion-guided feature fusion decoder is employed to generate a 3D talking face with enhanced emotion. The decoder is driven by the disentangled identity, emotional, and content embeddings so as to generate controllable personal and emotional styles. Finally, considering the scarcity of the 3D emotional talking face data, we resort to the supervision of facial blendshapes, which enables the reconstruction of plausible 3D faces from 2D emotional data, and contribute a large-scale 3D emotional talking face dataset (3D-ETF) to train the network. Our experiments and user studies demonstrate that our approach outperforms state-of-the-art methods and exhibits more diverse facial movements. We recommend watching the supplementary video: https://ziqiaopeng.github.io/emotalk
M2FNet: Multi-modal Fusion Network for Emotion Recognition in Conversation
Emotion Recognition in Conversations (ERC) is crucial in developing sympathetic human-machine interaction. In conversational videos, emotion can be present in multiple modalities, i.e., audio, video, and transcript. However, due to the inherent characteristics of these modalities, multi-modal ERC has always been considered a challenging undertaking. Existing ERC research focuses mainly on using text information in a discussion, ignoring the other two modalities. We anticipate that emotion recognition accuracy can be improved by employing a multi-modal approach. Thus, in this study, we propose a Multi-modal Fusion Network (M2FNet) that extracts emotion-relevant features from visual, audio, and text modality. It employs a multi-head attention-based fusion mechanism to combine emotion-rich latent representations of the input data. We introduce a new feature extractor to extract latent features from the audio and visual modality. The proposed feature extractor is trained with a novel adaptive margin-based triplet loss function to learn emotion-relevant features from the audio and visual data. In the domain of ERC, the existing methods perform well on one benchmark dataset but not on others. Our results show that the proposed M2FNet architecture outperforms all other methods in terms of weighted average F1 score on well-known MELD and IEMOCAP datasets and sets a new state-of-the-art performance in ERC.
Speech and Text-Based Emotion Recognizer
Affective computing is a field of study that focuses on developing systems and technologies that can understand, interpret, and respond to human emotions. Speech Emotion Recognition (SER), in particular, has got a lot of attention from researchers in the recent past. However, in many cases, the publicly available datasets, used for training and evaluation, are scarce and imbalanced across the emotion labels. In this work, we focused on building a balanced corpus from these publicly available datasets by combining these datasets as well as employing various speech data augmentation techniques. Furthermore, we experimented with different architectures for speech emotion recognition. Our best system, a multi-modal speech, and text-based model, provides a performance of UA(Unweighed Accuracy) + WA (Weighed Accuracy) of 157.57 compared to the baseline algorithm performance of 119.66
EmTract: Investor Emotions and Market Behavior
We develop a tool that extracts emotions from social media text data. Our methodology has three main advantages. First, it is tailored for financial context; second, it incorporates key aspects of social media data, such as non-standard phrases, emojis and emoticons; and third, it operates by sequentially learning a latent representation that includes features such as word order, word usage, and local context. This tool, along with a user guide is available at: https://github.com/dvamossy/EmTract. Using EmTract, we explore the relationship between investor emotions expressed on social media and asset prices. We document a number of interesting insights. First, we confirm some of the findings of controlled laboratory experiments relating investor emotions to asset price movements. Second, we show that investor emotions are predictive of daily price movements. These impacts are larger when volatility or short interest are higher, and when institutional ownership or liquidity are lower. Third, increased investor enthusiasm prior to the IPO contributes to the large first-day return and long-run underperformance of IPO stocks. To corroborate our results, we provide a number of robustness checks, including using an alternative emotion model. Our findings reinforce the intuition that emotions and market dynamics are closely related, and highlight the importance of considering investor emotions when assessing a stock's short-term value.
AffectGPT: A New Dataset, Model, and Benchmark for Emotion Understanding with Multimodal Large Language Models
The emergence of multimodal large language models (MLLMs) advances multimodal emotion recognition (MER) to the next level-from naive discriminative tasks to complex emotion understanding with advanced video understanding abilities and natural language description. However, the current community suffers from a lack of large-scale datasets with intensive, descriptive emotion annotations, as well as a multimodal-centric framework to maximize the potential of MLLMs for emotion understanding. To address this, we establish a new benchmark for MLLM-based emotion understanding with a novel dataset (MER-Caption), and a new model (AffectGPT). Utilizing our model-based crowd-sourcing data collection strategy, we construct the largest descriptive emotion dataset to date (by far), featuring over 2K fine-grained emotion categories across 115K samples. We also introduce the AffectGPT model, designed with pre-fusion operations to enhance multimodal integration. Finally, we present MER-UniBench, a unified benchmark with evaluation metrics tailored for both typical MER tasks and the free-form, natural language output style of MLLMs. Extensive experimental results demonstrate AffectGPT's robust performance across various MER tasks. We are publicly releasing both the AffectGPT model and the MER-Caption dataset to foster further research and development in emotion understanding.
EmoMent: An Emotion Annotated Mental Health Corpus from two South Asian Countries
People often utilise online media (e.g., Facebook, Reddit) as a platform to express their psychological distress and seek support. State-of-the-art NLP techniques demonstrate strong potential to automatically detect mental health issues from text. Research suggests that mental health issues are reflected in emotions (e.g., sadness) indicated in a person's choice of language. Therefore, we developed a novel emotion-annotated mental health corpus (EmoMent), consisting of 2802 Facebook posts (14845 sentences) extracted from two South Asian countries - Sri Lanka and India. Three clinical psychology postgraduates were involved in annotating these posts into eight categories, including 'mental illness' (e.g., depression) and emotions (e.g., 'sadness', 'anger'). EmoMent corpus achieved 'very good' inter-annotator agreement of 98.3% (i.e. % with two or more agreement) and Fleiss' Kappa of 0.82. Our RoBERTa based models achieved an F1 score of 0.76 and a macro-averaged F1 score of 0.77 for the first task (i.e. predicting a mental health condition from a post) and the second task (i.e. extent of association of relevant posts with the categories defined in our taxonomy), respectively.
EmPO: Emotion Grounding for Empathetic Response Generation through Preference Optimization
Empathetic response generation is a desirable aspect of conversational agents, crucial for facilitating engaging and emotionally intelligent multi-turn conversations between humans and machines. Leveraging large language models for this task has shown promising results, yet challenges persist in ensuring both the empathetic quality of the responses and retention of the generalization performance of the models. We propose a novel approach where we construct theory-driven preference datasets based on emotion grounding and use them to align LLMs with preference optimization algorithms to address these challenges. To evaluate empathetic response generation, we employ the EmpatheticDialogues dataset, assessing empathy with the diff-Epitome and BERTscore metrics and with multi-dimensional human evaluation. Additionally, we measure diversity and emotional valence using feature-based methods. We also evaluate the impact of training on the generalization performance using the MMLU benchmark and tasks from the Open LLM Leaderboard. The results show that LLMs can be aligned for empathetic response generation by preference optimization while retaining their general performance and that emotion grounding can guide preference dataset creation. We make all datasets, source code, and models publicly available. https://github.com/justtherightsize/empo
Is Style All You Need? Dependencies Between Emotion and GST-based Speaker Recognition
In this work, we study the hypothesis that speaker identity embeddings extracted from speech samples may be used for detection and classification of emotion. In particular, we show that emotions can be effectively identified by learning speaker identities by use of a 1-D Triplet Convolutional Neural Network (CNN) & Global Style Token (GST) scheme (e.g., DeepTalk Network) and reusing the trained speaker recognition model weights to generate features in the emotion classification domain. The automatic speaker recognition (ASR) network is trained with VoxCeleb1, VoxCeleb2, and Librispeech datasets with a triplet training loss function using speaker identity labels. Using an Support Vector Machine (SVM) classifier, we map speaker identity embeddings into discrete emotion categories from the CREMA-D, IEMOCAP, and MSP-Podcast datasets. On the task of speech emotion detection, we obtain 80.8% ACC with acted emotion samples from CREMA-D, 81.2% ACC with semi-natural emotion samples in IEMOCAP, and 66.9% ACC with natural emotion samples in MSP-Podcast. We also propose a novel two-stage hierarchical classifier (HC) approach which demonstrates +2% ACC improvement on CREMA-D emotion samples. Through this work, we seek to convey the importance of holistically modeling intra-user variation within audio samples
Socratis: Are large multimodal models emotionally aware?
Existing emotion prediction benchmarks contain coarse emotion labels which do not consider the diversity of emotions that an image and text can elicit in humans due to various reasons. Learning diverse reactions to multimodal content is important as intelligent machines take a central role in generating and delivering content to society. To address this gap, we propose Socratis, a societal reactions benchmark, where each image-caption (IC) pair is annotated with multiple emotions and the reasons for feeling them. Socratis contains 18K free-form reactions for 980 emotions on 2075 image-caption pairs from 5 widely-read news and image-caption (IC) datasets. We benchmark the capability of state-of-the-art multimodal large language models to generate the reasons for feeling an emotion given an IC pair. Based on a preliminary human study, we observe that humans prefer human-written reasons over 2 times more often than machine-generated ones. This shows our task is harder than standard generation tasks because it starkly contrasts recent findings where humans cannot tell apart machine vs human-written news articles, for instance. We further see that current captioning metrics based on large vision-language models also fail to correlate with human preferences. We hope that these findings and our benchmark will inspire further research on training emotionally aware models.
EmoSpeech: Guiding FastSpeech2 Towards Emotional Text to Speech
State-of-the-art speech synthesis models try to get as close as possible to the human voice. Hence, modelling emotions is an essential part of Text-To-Speech (TTS) research. In our work, we selected FastSpeech2 as the starting point and proposed a series of modifications for synthesizing emotional speech. According to automatic and human evaluation, our model, EmoSpeech, surpasses existing models regarding both MOS score and emotion recognition accuracy in generated speech. We provided a detailed ablation study for every extension to FastSpeech2 architecture that forms EmoSpeech. The uneven distribution of emotions in the text is crucial for better, synthesized speech and intonation perception. Our model includes a conditioning mechanism that effectively handles this issue by allowing emotions to contribute to each phone with varying intensity levels. The human assessment indicates that proposed modifications generate audio with higher MOS and emotional expressiveness.
End-to-End Continuous Speech Emotion Recognition in Real-life Customer Service Call Center Conversations
Speech Emotion recognition (SER) in call center conversations has emerged as a valuable tool for assessing the quality of interactions between clients and agents. In contrast to controlled laboratory environments, real-life conversations take place under uncontrolled conditions and are subject to contextual factors that influence the expression of emotions. In this paper, we present our approach to constructing a large-scale reallife dataset (CusEmo) for continuous SER in customer service call center conversations. We adopted the dimensional emotion annotation approach to capture the subtlety, complexity, and continuity of emotions in real-life call center conversations, while annotating contextual information. The study also addresses the challenges encountered during the application of the End-to-End (E2E) SER system to the dataset, including determining the appropriate label sampling rate and input segment length, as well as integrating contextual information (interlocutor's gender and empathy level) with different weights using multitask learning. The result shows that incorporating the empathy level information improved the model's performance.
MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations
Emotion recognition in conversations is a challenging task that has recently gained popularity due to its potential applications. Until now, however, a large-scale multimodal multi-party emotional conversational database containing more than two speakers per dialogue was missing. Thus, we propose the Multimodal EmotionLines Dataset (MELD), an extension and enhancement of EmotionLines. MELD contains about 13,000 utterances from 1,433 dialogues from the TV-series Friends. Each utterance is annotated with emotion and sentiment labels, and encompasses audio, visual and textual modalities. We propose several strong multimodal baselines and show the importance of contextual and multimodal information for emotion recognition in conversations. The full dataset is available for use at http:// affective-meld.github.io.