How Stable is Stable Diffusion under Recursive InPainting (RIP)?
Abstract
Generative Artificial Intelligence image models have achieved outstanding performance in text-to-image generation and other tasks, such as inpainting that completes images with missing fragments. The performance of inpainting can be accurately measured by taking an image, removing some fragments, performing the inpainting to restore them, and comparing the results with the original image. Interestingly, inpainting can also be applied recursively, starting from an image, removing some parts, applying inpainting to reconstruct the image, and then starting the inpainting process again on the reconstructed image, and so forth. This process of recursively applying inpainting can lead to an image that is similar or completely different from the original one, depending on the fragments that are removed and the ability of the model to reconstruct them. Intuitively, stability, understood as the capability to recover an image that is similar to the original one even after many recursive inpainting operations, is a desirable feature and can be used as an additional performance metric for inpainting. The concept of stability is also being studied in the context of recursive training of generative AI models with their own data. Recursive inpainting is an inference-only recursive process whose understanding may complement ongoing efforts to study the behavior of generative AI models under training recursion. In this paper, the impact of recursive inpainting is studied for one of the most widely used image models: Stable Diffusion. The results show that recursive inpainting can lead to image collapse, so ending with a nonmeaningful image, and that the outcome depends on several factors such as the type of image, the size of the inpainting masks, and the number of iterations.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 1
Collections including this paper 0
No Collection including this paper