Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step
Abstract
Recently, Direct Preference Optimization (DPO) has extended its success from aligning large language models (LLMs) to aligning text-to-image diffusion models with human preferences. Unlike most existing DPO methods that assume all diffusion steps share a consistent preference order with the final generated images, we argue that this assumption neglects step-specific denoising performance and that preference labels should be tailored to each step's contribution. To address this limitation, we propose Step-aware Preference Optimization (SPO), a novel post-training approach that independently evaluates and adjusts the denoising performance at each step, using a step-aware preference model and a step-wise resampler to ensure accurate step-aware supervision. Specifically, at each denoising step, we sample a pool of images, find a suitable win-lose pair, and, most importantly, randomly select a single image from the pool to initialize the next denoising step. This step-wise resampler process ensures the next win-lose image pair comes from the same image, making the win-lose comparison independent of the previous step. To assess the preferences at each step, we train a separate step-aware preference model that can be applied to both noisy and clean images. Our experiments with Stable Diffusion v1.5 and SDXL demonstrate that SPO significantly outperforms the latest Diffusion-DPO in aligning generated images with complex, detailed prompts and enhancing aesthetics, while also achieving more than 20x times faster in training efficiency. Code and model: https://rockeycoss.github.io/spo.github.io/
Community
Plain-english rewrite of the paper is here - feedback welcome! https://www.aimodels.fyi/papers/arxiv/step-aware-preference-optimization-aligning-preference-denoising
Unveiling Step-aware Preference Optimization for Better AI Art! 🎨🤖
Links 🔗:
👉 Subscribe: https://www.youtube.com/@Arxflix
👉 Twitter: https://x.com/arxflix
👉 LMNT (Partner): https://lmnt.com/
Models citing this paper 5
Browse 5 models citing this paperDatasets citing this paper 0
No dataset linking this paper