Papers
arxiv:2305.12073

GELU Activation Function in Deep Learning: A Comprehensive Mathematical Analysis and Performance

Published on May 20, 2023
Authors:

Abstract

Selecting the most suitable activation function is a critical factor in the effectiveness of deep learning models, as it influences their learning capacity, stability, and computational efficiency. In recent years, the Gaussian Error Linear Unit (GELU) activation function has emerged as a dominant method, surpassing traditional functions such as the Rectified Linear Unit (ReLU) in various applications. This study presents a rigorous mathematical investigation of the GELU activation function, exploring its differentiability, boundedness, stationarity, and smoothness properties in detail. Additionally, we conduct an extensive experimental comparison of the GELU function against a broad range of alternative activation functions, utilizing a residual convolutional network trained on the CIFAR-10, <PRE_TAG>CIFAR-100</POST_TAG>, and STL-10 datasets as the empirical testbed. Our results demonstrate the superior performance of GELU compared to other activation functions, establishing its suitability for a wide range of deep learning applications. This comprehensive study contributes to a more profound understanding of the underlying mathematical properties of GELU and provides valuable insights for practitioners aiming to select activation functions that optimally align with their specific objectives and constraints in deep learning.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2305.12073 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2305.12073 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2305.12073 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.