Papers
arxiv:2304.12986

Measuring Massive Multitask Chinese Understanding

Published on Apr 25, 2023
Authors:

Abstract

The development of large-scale Chinese language models is flourishing, yet there is a lack of corresponding capability assessments. Therefore, we propose a test to measure the multitask accuracy of large Chinese language models. This test encompasses four major domains, including medicine, law, psychology, and education, with 15 subtasks in medicine and 8 subtasks in education. We found that the best-performing models in the zero-shot setting outperformed the worst-performing models by nearly 18.6 percentage points on average. Across the four major domains, the highest average zero-shot accuracy of all models is 0.512. In the subdomains, only the GPT-3.5-turbo model achieved a zero-shot accuracy of 0.693 in clinical medicine, which was the highest accuracy among all models across all subtasks. All models performed poorly in the legal domain, with the highest zero-shot accuracy reaching only 0.239. By comprehensively evaluating the breadth and depth of knowledge across multiple disciplines, this test can more accurately identify the shortcomings of the models.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2304.12986 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 3

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.