Papers
arxiv:2012.09841

Taming Transformers for High-Resolution Image Synthesis

Published on Dec 17, 2020
Authors:
,
,

Abstract

Designed to learn long-range interactions on sequential data, transformers continue to show state-of-the-art results on a wide variety of tasks. In contrast to CNNs, they contain no inductive bias that prioritizes local interactions. This makes them expressive, but also computationally infeasible for long sequences, such as high-resolution images. We demonstrate how combining the effectiveness of the inductive bias of CNNs with the expressivity of transformers enables them to model and thereby synthesize high-resolution images. We show how to (i) use CNNs to learn a context-rich vocabulary of image constituents, and in turn (ii) utilize transformers to efficiently model their composition within high-resolution images. Our approach is readily applied to conditional synthesis tasks, where both non-spatial information, such as object classes, and spatial information, such as segmentations, can control the generated image. In particular, we present the first results on semantically-guided synthesis of megapixel images with transformers and obtain the state of the art among autoregressive models on class-conditional ImageNet. Code and pretrained models can be found at https://github.com/CompVis/taming-transformers .

Community

Taming Transformers for Stunning High-Resolution Images

Links πŸ”—:

πŸ‘‰ Subscribe: https://www.youtube.com/@Arxflix
πŸ‘‰ Twitter: https://x.com/arxflix
πŸ‘‰ LMNT (Partner): https://lmnt.com/

By Arxflix
9t4iCUHx_400x400-1.jpg

Sign up or log in to comment

Models citing this paper 7

Browse 7 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2012.09841 in a dataset README.md to link it from this page.

Spaces citing this paper 84

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.