--- license: other base_model: apple/mobilevitv2-1.0-imagenet1k-256 tags: - generated_from_trainer metrics: - accuracy model-index: - name: mobilevit-trained-task3 results: [] --- # mobilevit-trained-task3 This model is a fine-tuned version of [apple/mobilevitv2-1.0-imagenet1k-256](https://huggingface.co./apple/mobilevitv2-1.0-imagenet1k-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1371 - Accuracy: 0.9670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6753 | 0.99 | 126 | 0.8382 | 0.7376 | | 0.6882 | 2.0 | 253 | 0.6129 | 0.7874 | | 0.4068 | 3.0 | 380 | 0.3532 | 0.8876 | | 0.3587 | 4.0 | 507 | 0.4896 | 0.8622 | | 0.3013 | 4.99 | 633 | 0.2656 | 0.9078 | | 0.2777 | 6.0 | 760 | 0.1679 | 0.9472 | | 0.2093 | 7.0 | 887 | 0.2264 | 0.9302 | | 0.1866 | 8.0 | 1014 | 0.2245 | 0.9263 | | 0.1896 | 8.99 | 1140 | 0.2252 | 0.9333 | | 0.1059 | 10.0 | 1267 | 0.1544 | 0.9528 | | 0.1072 | 11.0 | 1394 | 0.2232 | 0.9391 | | 0.1121 | 12.0 | 1521 | 0.1723 | 0.9467 | | 0.103 | 12.99 | 1647 | 0.1750 | 0.9530 | | 0.071 | 14.0 | 1774 | 0.1713 | 0.9541 | | 0.0276 | 15.0 | 1901 | 0.1384 | 0.9631 | | 0.0279 | 16.0 | 2028 | 0.1575 | 0.9607 | | 0.0396 | 16.99 | 2154 | 0.1579 | 0.9604 | | 0.0129 | 18.0 | 2281 | 0.1389 | 0.9674 | | 0.0031 | 19.0 | 2408 | 0.1315 | 0.9689 | | 0.0074 | 19.88 | 2520 | 0.1371 | 0.9670 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2