update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: recipe-roberta-tis
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# recipe-roberta-tis
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.8491
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 2e-05
|
37 |
+
- train_batch_size: 256
|
38 |
+
- eval_batch_size: 256
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 20
|
43 |
+
- mixed_precision_training: Native AMP
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
49 |
+
| 1.3552 | 1.0 | 1012 | 1.1292 |
|
50 |
+
| 1.1811 | 2.0 | 2024 | 1.0543 |
|
51 |
+
| 1.1095 | 3.0 | 3036 | 1.0122 |
|
52 |
+
| 1.0667 | 4.0 | 4048 | 0.9756 |
|
53 |
+
| 1.0345 | 5.0 | 5060 | 0.9478 |
|
54 |
+
| 1.0112 | 6.0 | 6072 | 0.9292 |
|
55 |
+
| 0.9922 | 7.0 | 7084 | 0.9137 |
|
56 |
+
| 0.9762 | 8.0 | 8096 | 0.9056 |
|
57 |
+
| 0.9627 | 9.0 | 9108 | 0.8977 |
|
58 |
+
| 0.9507 | 10.0 | 10120 | 0.8868 |
|
59 |
+
| 0.9411 | 11.0 | 11132 | 0.8823 |
|
60 |
+
| 0.9344 | 12.0 | 12144 | 0.8745 |
|
61 |
+
| 0.9261 | 13.0 | 13156 | 0.8688 |
|
62 |
+
| 0.9189 | 14.0 | 14168 | 0.8614 |
|
63 |
+
| 0.9133 | 15.0 | 15180 | 0.8609 |
|
64 |
+
| 0.9078 | 16.0 | 16192 | 0.8581 |
|
65 |
+
| 0.906 | 17.0 | 17204 | 0.8544 |
|
66 |
+
| 0.9015 | 18.0 | 18216 | 0.8537 |
|
67 |
+
| 0.8988 | 19.0 | 19228 | 0.8494 |
|
68 |
+
| 0.8975 | 20.0 | 20240 | 0.8491 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.19.0.dev0
|
74 |
+
- Pytorch 1.11.0+cu102
|
75 |
+
- Datasets 2.3.2
|
76 |
+
- Tokenizers 0.12.1
|