--- language: - de license: mit base_model: deepset/gbert-base datasets: - germaner metrics: - precision - recall - f1 - accuracy model-index: - name: gbert-base-germaner results: - task: name: Token Classification type: token-classification dataset: name: germaner type: germaner args: default metrics: - name: precision type: precision value: 0.8403996101364523 - name: recall type: recall value: 0.8674547283702213 - name: f1 type: f1 value: 0.8537128712871287 - name: accuracy type: accuracy value: 0.9760785008915815 --- # gbert-base-germaner This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co./deepset/gbert-base) on the germaner dataset. It achieves the following results on the evaluation set: - precision: 0.8404 - recall: 0.8675 - f1: 0.8537 - accuracy: 0.9761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - num_train_epochs: 5 - train_batch_size: 16 - eval_batch_size: 32 - learning_rate: 2e-06 - weight_decay_rate: 0.01 - num_warmup_steps: 0 - fp16: True ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3