File size: 2,009 Bytes
1d789c6 d339adb 1d789c6 b651b76 1d789c6 468b626 1d789c6 6dbfb5f 1d789c6 6dbfb5f 468b626 1d789c6 6dbfb5f 468b626 1d789c6 2eb2483 468b626 1d789c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BERT-full-finetuned-ner-pablo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT-full-finetuned-ner-pablo
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on the n2c2 2018 dataset for the paper https://arxiv.org/abs/2409.19467.
It achieves the following results on the evaluation set:
- Loss: 0.0854
- Precision: 0.7857
- Recall: 0.7899
- F1: 0.7878
- Accuracy: 0.9747
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 231 | 0.1015 | 0.7485 | 0.7440 | 0.7462 | 0.9703 |
| No log | 2.0 | 462 | 0.0878 | 0.7618 | 0.7750 | 0.7684 | 0.9728 |
| 0.2646 | 3.0 | 693 | 0.0859 | 0.7759 | 0.7912 | 0.7835 | 0.9737 |
| 0.2646 | 4.0 | 924 | 0.0854 | 0.7857 | 0.7899 | 0.7878 | 0.9747 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|