pEpOo commited on
Commit
029af5a
·
1 Parent(s): b05270a

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: "Rly tragedy in MP: Some live to recount horror: \x89ÛÏWhen I saw coaches\
12
+ \ of my train plunging into water I called my daughters and said t..."
13
+ - text: You must be annihilated!
14
+ - text: 'Severe Thunderstorms and Flash Flooding Possible in the Mid-South and Midwest
15
+ http://t.co/uAhIcWpIh4 #WEATHER #ENVIRONMENT #CLIMATE #NATURE'
16
+ - text: 'everyone''s wonder who will win and I''m over here wondering are those grapes
17
+ real ?????? #BB17'
18
+ - text: i swea it feels like im about to explode ??
19
+ pipeline_tag: text-classification
20
+ inference: true
21
+ base_model: sentence-transformers/all-mpnet-base-v2
22
+ model-index:
23
+ - name: SetFit with sentence-transformers/all-mpnet-base-v2
24
+ results:
25
+ - task:
26
+ type: text-classification
27
+ name: Text Classification
28
+ dataset:
29
+ name: Unknown
30
+ type: unknown
31
+ split: test
32
+ metrics:
33
+ - type: accuracy
34
+ value: 0.9203152364273205
35
+ name: Accuracy
36
+ ---
37
+
38
+ # SetFit with sentence-transformers/all-mpnet-base-v2
39
+
40
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
41
+
42
+ The model has been trained using an efficient few-shot learning technique that involves:
43
+
44
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
45
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** SetFit
51
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
52
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
53
+ - **Maximum Sequence Length:** 384 tokens
54
+ - **Number of Classes:** 2 classes
55
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
62
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
63
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
64
+
65
+ ### Model Labels
66
+ | Label | Examples |
67
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
68
+ | 0 | <ul><li>'To fight bioterrorism sir.'</li><li>'85V-265V 10W LED Warm White Light Motion Sensor Outdoor Flood Light PIR Lamp AUC http://t.co/NJVPXzMj5V http://t.co/Ijd7WzV5t9'</li><li>'Photo: referencereference: xekstrin: I THOUGHT THE NOSTRILS WERE EYES AND I ALMOST CRIED FROM FEAR partake... http://t.co/O7yYjLuKfJ'</li></ul> |
69
+ | 1 | <ul><li>'Police officer wounded suspect dead after exchanging shots: RICHMOND Va. (AP) \x89ÛÓ A Richmond police officer wa... http://t.co/Y0qQS2L7bS'</li><li>"There's a weird siren going off here...I hope Hunterston isn't in the process of blowing itself to smithereens..."</li><li>'Iranian warship points weapon at American helicopter... http://t.co/cgFZk8Ha1R'</li></ul> |
70
+
71
+ ## Evaluation
72
+
73
+ ### Metrics
74
+ | Label | Accuracy |
75
+ |:--------|:---------|
76
+ | **all** | 0.9203 |
77
+
78
+ ## Uses
79
+
80
+ ### Direct Use for Inference
81
+
82
+ First install the SetFit library:
83
+
84
+ ```bash
85
+ pip install setfit
86
+ ```
87
+
88
+ Then you can load this model and run inference.
89
+
90
+ ```python
91
+ from setfit import SetFitModel
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SetFitModel.from_pretrained("pEpOo/catastrophy8")
95
+ # Run inference
96
+ preds = model("You must be annihilated!")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:--------|:----|
128
+ | Word count | 1 | 14.5506 | 54 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:------|:----------------------|
132
+ | 0 | 438 |
133
+ | 1 | 323 |
134
+
135
+ ### Training Hyperparameters
136
+ - batch_size: (20, 20)
137
+ - num_epochs: (1, 1)
138
+ - max_steps: -1
139
+ - sampling_strategy: oversampling
140
+ - num_iterations: 20
141
+ - body_learning_rate: (2e-05, 2e-05)
142
+ - head_learning_rate: 2e-05
143
+ - loss: CosineSimilarityLoss
144
+ - distance_metric: cosine_distance
145
+ - margin: 0.25
146
+ - end_to_end: False
147
+ - use_amp: False
148
+ - warmup_proportion: 0.1
149
+ - seed: 42
150
+ - eval_max_steps: -1
151
+ - load_best_model_at_end: False
152
+
153
+ ### Training Results
154
+ | Epoch | Step | Training Loss | Validation Loss |
155
+ |:------:|:-----:|:-------------:|:---------------:|
156
+ | 0.0001 | 1 | 0.3847 | - |
157
+ | 0.0044 | 50 | 0.3738 | - |
158
+ | 0.0088 | 100 | 0.2274 | - |
159
+ | 0.0131 | 150 | 0.2747 | - |
160
+ | 0.0175 | 200 | 0.2251 | - |
161
+ | 0.0219 | 250 | 0.2562 | - |
162
+ | 0.0263 | 300 | 0.2623 | - |
163
+ | 0.0307 | 350 | 0.1904 | - |
164
+ | 0.0350 | 400 | 0.2314 | - |
165
+ | 0.0394 | 450 | 0.1669 | - |
166
+ | 0.0438 | 500 | 0.1135 | - |
167
+ | 0.0482 | 550 | 0.1489 | - |
168
+ | 0.0525 | 600 | 0.1907 | - |
169
+ | 0.0569 | 650 | 0.1728 | - |
170
+ | 0.0613 | 700 | 0.125 | - |
171
+ | 0.0657 | 750 | 0.109 | - |
172
+ | 0.0701 | 800 | 0.0968 | - |
173
+ | 0.0744 | 850 | 0.2101 | - |
174
+ | 0.0788 | 900 | 0.1974 | - |
175
+ | 0.0832 | 950 | 0.1986 | - |
176
+ | 0.0876 | 1000 | 0.0747 | - |
177
+ | 0.0920 | 1050 | 0.1117 | - |
178
+ | 0.0963 | 1100 | 0.1092 | - |
179
+ | 0.1007 | 1150 | 0.1582 | - |
180
+ | 0.1051 | 1200 | 0.1243 | - |
181
+ | 0.1095 | 1250 | 0.2873 | - |
182
+ | 0.1139 | 1300 | 0.2415 | - |
183
+ | 0.1182 | 1350 | 0.1264 | - |
184
+ | 0.1226 | 1400 | 0.127 | - |
185
+ | 0.1270 | 1450 | 0.1308 | - |
186
+ | 0.1314 | 1500 | 0.0669 | - |
187
+ | 0.1358 | 1550 | 0.1218 | - |
188
+ | 0.1401 | 1600 | 0.114 | - |
189
+ | 0.1445 | 1650 | 0.0612 | - |
190
+ | 0.1489 | 1700 | 0.0527 | - |
191
+ | 0.1533 | 1750 | 0.1421 | - |
192
+ | 0.1576 | 1800 | 0.0048 | - |
193
+ | 0.1620 | 1850 | 0.0141 | - |
194
+ | 0.1664 | 1900 | 0.0557 | - |
195
+ | 0.1708 | 1950 | 0.0206 | - |
196
+ | 0.1752 | 2000 | 0.1171 | - |
197
+ | 0.1795 | 2050 | 0.0968 | - |
198
+ | 0.1839 | 2100 | 0.0243 | - |
199
+ | 0.1883 | 2150 | 0.0233 | - |
200
+ | 0.1927 | 2200 | 0.0738 | - |
201
+ | 0.1971 | 2250 | 0.0071 | - |
202
+ | 0.2014 | 2300 | 0.0353 | - |
203
+ | 0.2058 | 2350 | 0.0602 | - |
204
+ | 0.2102 | 2400 | 0.003 | - |
205
+ | 0.2146 | 2450 | 0.0625 | - |
206
+ | 0.2190 | 2500 | 0.0173 | - |
207
+ | 0.2233 | 2550 | 0.1017 | - |
208
+ | 0.2277 | 2600 | 0.0582 | - |
209
+ | 0.2321 | 2650 | 0.0437 | - |
210
+ | 0.2365 | 2700 | 0.104 | - |
211
+ | 0.2408 | 2750 | 0.0156 | - |
212
+ | 0.2452 | 2800 | 0.0034 | - |
213
+ | 0.2496 | 2850 | 0.0343 | - |
214
+ | 0.2540 | 2900 | 0.1106 | - |
215
+ | 0.2584 | 2950 | 0.001 | - |
216
+ | 0.2627 | 3000 | 0.004 | - |
217
+ | 0.2671 | 3050 | 0.0074 | - |
218
+ | 0.2715 | 3100 | 0.0849 | - |
219
+ | 0.2759 | 3150 | 0.0009 | - |
220
+ | 0.2803 | 3200 | 0.0379 | - |
221
+ | 0.2846 | 3250 | 0.0109 | - |
222
+ | 0.2890 | 3300 | 0.0019 | - |
223
+ | 0.2934 | 3350 | 0.0154 | - |
224
+ | 0.2978 | 3400 | 0.0017 | - |
225
+ | 0.3022 | 3450 | 0.0003 | - |
226
+ | 0.3065 | 3500 | 0.0002 | - |
227
+ | 0.3109 | 3550 | 0.0025 | - |
228
+ | 0.3153 | 3600 | 0.0123 | - |
229
+ | 0.3197 | 3650 | 0.0007 | - |
230
+ | 0.3240 | 3700 | 0.0534 | - |
231
+ | 0.3284 | 3750 | 0.0004 | - |
232
+ | 0.3328 | 3800 | 0.0084 | - |
233
+ | 0.3372 | 3850 | 0.0088 | - |
234
+ | 0.3416 | 3900 | 0.0201 | - |
235
+ | 0.3459 | 3950 | 0.0002 | - |
236
+ | 0.3503 | 4000 | 0.0102 | - |
237
+ | 0.3547 | 4050 | 0.0043 | - |
238
+ | 0.3591 | 4100 | 0.0124 | - |
239
+ | 0.3635 | 4150 | 0.0845 | - |
240
+ | 0.3678 | 4200 | 0.0002 | - |
241
+ | 0.3722 | 4250 | 0.0014 | - |
242
+ | 0.3766 | 4300 | 0.1131 | - |
243
+ | 0.3810 | 4350 | 0.0612 | - |
244
+ | 0.3854 | 4400 | 0.0577 | - |
245
+ | 0.3897 | 4450 | 0.0235 | - |
246
+ | 0.3941 | 4500 | 0.0156 | - |
247
+ | 0.3985 | 4550 | 0.0078 | - |
248
+ | 0.4029 | 4600 | 0.0356 | - |
249
+ | 0.4073 | 4650 | 0.0595 | - |
250
+ | 0.4116 | 4700 | 0.0001 | - |
251
+ | 0.4160 | 4750 | 0.0018 | - |
252
+ | 0.4204 | 4800 | 0.0013 | - |
253
+ | 0.4248 | 4850 | 0.0008 | - |
254
+ | 0.4291 | 4900 | 0.0832 | - |
255
+ | 0.4335 | 4950 | 0.0083 | - |
256
+ | 0.4379 | 5000 | 0.0007 | - |
257
+ | 0.4423 | 5050 | 0.0417 | - |
258
+ | 0.4467 | 5100 | 0.0001 | - |
259
+ | 0.4510 | 5150 | 0.0218 | - |
260
+ | 0.4554 | 5200 | 0.0001 | - |
261
+ | 0.4598 | 5250 | 0.0012 | - |
262
+ | 0.4642 | 5300 | 0.0002 | - |
263
+ | 0.4686 | 5350 | 0.0006 | - |
264
+ | 0.4729 | 5400 | 0.0223 | - |
265
+ | 0.4773 | 5450 | 0.0612 | - |
266
+ | 0.4817 | 5500 | 0.0004 | - |
267
+ | 0.4861 | 5550 | 0.0 | - |
268
+ | 0.4905 | 5600 | 0.0007 | - |
269
+ | 0.4948 | 5650 | 0.0007 | - |
270
+ | 0.4992 | 5700 | 0.0116 | - |
271
+ | 0.5036 | 5750 | 0.0262 | - |
272
+ | 0.5080 | 5800 | 0.0336 | - |
273
+ | 0.5123 | 5850 | 0.026 | - |
274
+ | 0.5167 | 5900 | 0.0004 | - |
275
+ | 0.5211 | 5950 | 0.0001 | - |
276
+ | 0.5255 | 6000 | 0.0001 | - |
277
+ | 0.5299 | 6050 | 0.0001 | - |
278
+ | 0.5342 | 6100 | 0.0029 | - |
279
+ | 0.5386 | 6150 | 0.0001 | - |
280
+ | 0.5430 | 6200 | 0.0699 | - |
281
+ | 0.5474 | 6250 | 0.0262 | - |
282
+ | 0.5518 | 6300 | 0.0269 | - |
283
+ | 0.5561 | 6350 | 0.0002 | - |
284
+ | 0.5605 | 6400 | 0.0666 | - |
285
+ | 0.5649 | 6450 | 0.0209 | - |
286
+ | 0.5693 | 6500 | 0.0003 | - |
287
+ | 0.5737 | 6550 | 0.0001 | - |
288
+ | 0.5780 | 6600 | 0.0115 | - |
289
+ | 0.5824 | 6650 | 0.0003 | - |
290
+ | 0.5868 | 6700 | 0.0001 | - |
291
+ | 0.5912 | 6750 | 0.0056 | - |
292
+ | 0.5956 | 6800 | 0.0603 | - |
293
+ | 0.5999 | 6850 | 0.0002 | - |
294
+ | 0.6043 | 6900 | 0.0003 | - |
295
+ | 0.6087 | 6950 | 0.0092 | - |
296
+ | 0.6131 | 7000 | 0.0562 | - |
297
+ | 0.6174 | 7050 | 0.0408 | - |
298
+ | 0.6218 | 7100 | 0.0001 | - |
299
+ | 0.6262 | 7150 | 0.0035 | - |
300
+ | 0.6306 | 7200 | 0.0337 | - |
301
+ | 0.6350 | 7250 | 0.0024 | - |
302
+ | 0.6393 | 7300 | 0.0005 | - |
303
+ | 0.6437 | 7350 | 0.0001 | - |
304
+ | 0.6481 | 7400 | 0.0 | - |
305
+ | 0.6525 | 7450 | 0.0001 | - |
306
+ | 0.6569 | 7500 | 0.0002 | - |
307
+ | 0.6612 | 7550 | 0.0004 | - |
308
+ | 0.6656 | 7600 | 0.0125 | - |
309
+ | 0.6700 | 7650 | 0.0005 | - |
310
+ | 0.6744 | 7700 | 0.0157 | - |
311
+ | 0.6788 | 7750 | 0.0055 | - |
312
+ | 0.6831 | 7800 | 0.0 | - |
313
+ | 0.6875 | 7850 | 0.0053 | - |
314
+ | 0.6919 | 7900 | 0.0 | - |
315
+ | 0.6963 | 7950 | 0.0002 | - |
316
+ | 0.7006 | 8000 | 0.0002 | - |
317
+ | 0.7050 | 8050 | 0.0001 | - |
318
+ | 0.7094 | 8100 | 0.0001 | - |
319
+ | 0.7138 | 8150 | 0.0001 | - |
320
+ | 0.7182 | 8200 | 0.0007 | - |
321
+ | 0.7225 | 8250 | 0.0002 | - |
322
+ | 0.7269 | 8300 | 0.0001 | - |
323
+ | 0.7313 | 8350 | 0.0 | - |
324
+ | 0.7357 | 8400 | 0.0156 | - |
325
+ | 0.7401 | 8450 | 0.0098 | - |
326
+ | 0.7444 | 8500 | 0.0 | - |
327
+ | 0.7488 | 8550 | 0.0001 | - |
328
+ | 0.7532 | 8600 | 0.0042 | - |
329
+ | 0.7576 | 8650 | 0.0 | - |
330
+ | 0.7620 | 8700 | 0.0 | - |
331
+ | 0.7663 | 8750 | 0.0056 | - |
332
+ | 0.7707 | 8800 | 0.0 | - |
333
+ | 0.7751 | 8850 | 0.0 | - |
334
+ | 0.7795 | 8900 | 0.013 | - |
335
+ | 0.7839 | 8950 | 0.0 | - |
336
+ | 0.7882 | 9000 | 0.0001 | - |
337
+ | 0.7926 | 9050 | 0.0 | - |
338
+ | 0.7970 | 9100 | 0.0 | - |
339
+ | 0.8014 | 9150 | 0.0 | - |
340
+ | 0.8057 | 9200 | 0.0 | - |
341
+ | 0.8101 | 9250 | 0.0 | - |
342
+ | 0.8145 | 9300 | 0.0007 | - |
343
+ | 0.8189 | 9350 | 0.0 | - |
344
+ | 0.8233 | 9400 | 0.0002 | - |
345
+ | 0.8276 | 9450 | 0.0 | - |
346
+ | 0.8320 | 9500 | 0.0 | - |
347
+ | 0.8364 | 9550 | 0.0089 | - |
348
+ | 0.8408 | 9600 | 0.0001 | - |
349
+ | 0.8452 | 9650 | 0.0 | - |
350
+ | 0.8495 | 9700 | 0.0 | - |
351
+ | 0.8539 | 9750 | 0.0 | - |
352
+ | 0.8583 | 9800 | 0.0565 | - |
353
+ | 0.8627 | 9850 | 0.0161 | - |
354
+ | 0.8671 | 9900 | 0.0 | - |
355
+ | 0.8714 | 9950 | 0.0246 | - |
356
+ | 0.8758 | 10000 | 0.0 | - |
357
+ | 0.8802 | 10050 | 0.0 | - |
358
+ | 0.8846 | 10100 | 0.012 | - |
359
+ | 0.8889 | 10150 | 0.0 | - |
360
+ | 0.8933 | 10200 | 0.0 | - |
361
+ | 0.8977 | 10250 | 0.0 | - |
362
+ | 0.9021 | 10300 | 0.0 | - |
363
+ | 0.9065 | 10350 | 0.0 | - |
364
+ | 0.9108 | 10400 | 0.0 | - |
365
+ | 0.9152 | 10450 | 0.0 | - |
366
+ | 0.9196 | 10500 | 0.0 | - |
367
+ | 0.9240 | 10550 | 0.0023 | - |
368
+ | 0.9284 | 10600 | 0.0 | - |
369
+ | 0.9327 | 10650 | 0.0006 | - |
370
+ | 0.9371 | 10700 | 0.0 | - |
371
+ | 0.9415 | 10750 | 0.0 | - |
372
+ | 0.9459 | 10800 | 0.0 | - |
373
+ | 0.9503 | 10850 | 0.0 | - |
374
+ | 0.9546 | 10900 | 0.0 | - |
375
+ | 0.9590 | 10950 | 0.0243 | - |
376
+ | 0.9634 | 11000 | 0.0107 | - |
377
+ | 0.9678 | 11050 | 0.0001 | - |
378
+ | 0.9721 | 11100 | 0.0 | - |
379
+ | 0.9765 | 11150 | 0.0 | - |
380
+ | 0.9809 | 11200 | 0.0274 | - |
381
+ | 0.9853 | 11250 | 0.0 | - |
382
+ | 0.9897 | 11300 | 0.0 | - |
383
+ | 0.9940 | 11350 | 0.0 | - |
384
+ | 0.9984 | 11400 | 0.0 | - |
385
+ | 0.0007 | 1 | 0.2021 | - |
386
+ | 0.0329 | 50 | 0.1003 | - |
387
+ | 0.0657 | 100 | 0.2282 | - |
388
+ | 0.0986 | 150 | 0.0507 | - |
389
+ | 0.1314 | 200 | 0.046 | - |
390
+ | 0.1643 | 250 | 0.0001 | - |
391
+ | 0.1971 | 300 | 0.0495 | - |
392
+ | 0.2300 | 350 | 0.0031 | - |
393
+ | 0.2628 | 400 | 0.0004 | - |
394
+ | 0.2957 | 450 | 0.0002 | - |
395
+ | 0.3285 | 500 | 0.0 | - |
396
+ | 0.3614 | 550 | 0.0 | - |
397
+ | 0.3942 | 600 | 0.0 | - |
398
+ | 0.4271 | 650 | 0.0001 | - |
399
+ | 0.4599 | 700 | 0.0 | - |
400
+ | 0.4928 | 750 | 0.0 | - |
401
+ | 0.5256 | 800 | 0.0 | - |
402
+ | 0.5585 | 850 | 0.0 | - |
403
+ | 0.5913 | 900 | 0.0001 | - |
404
+ | 0.6242 | 950 | 0.0 | - |
405
+ | 0.6570 | 1000 | 0.0001 | - |
406
+ | 0.6899 | 1050 | 0.0 | - |
407
+ | 0.7227 | 1100 | 0.0 | - |
408
+ | 0.7556 | 1150 | 0.0 | - |
409
+ | 0.7884 | 1200 | 0.0 | - |
410
+ | 0.8213 | 1250 | 0.0 | - |
411
+ | 0.8541 | 1300 | 0.0 | - |
412
+ | 0.8870 | 1350 | 0.0 | - |
413
+ | 0.9198 | 1400 | 0.0 | - |
414
+ | 0.9527 | 1450 | 0.0001 | - |
415
+ | 0.9855 | 1500 | 0.0 | - |
416
+
417
+ ### Framework Versions
418
+ - Python: 3.10.12
419
+ - SetFit: 1.0.1
420
+ - Sentence Transformers: 2.2.2
421
+ - Transformers: 4.35.2
422
+ - PyTorch: 2.1.0+cu121
423
+ - Datasets: 2.15.0
424
+ - Tokenizers: 0.15.0
425
+
426
+ ## Citation
427
+
428
+ ### BibTeX
429
+ ```bibtex
430
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
431
+ doi = {10.48550/ARXIV.2209.11055},
432
+ url = {https://arxiv.org/abs/2209.11055},
433
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
434
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
435
+ title = {Efficient Few-Shot Learning Without Prompts},
436
+ publisher = {arXiv},
437
+ year = {2022},
438
+ copyright = {Creative Commons Attribution 4.0 International}
439
+ }
440
+ ```
441
+
442
+ <!--
443
+ ## Glossary
444
+
445
+ *Clearly define terms in order to be accessible across audiences.*
446
+ -->
447
+
448
+ <!--
449
+ ## Model Card Authors
450
+
451
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
452
+ -->
453
+
454
+ <!--
455
+ ## Model Card Contact
456
+
457
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
458
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0a46dcfb6be02899ea086ac43102c2c5bd24f455a97a08edb65c67548ebf476
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72d19dfb91af07be37c7c350746ff9d74a50b61213e6a4a029580e1d4c140824
3
+ size 6991
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 512,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff