File size: 9,091 Bytes
cc93325
 
afb5c85
 
 
 
 
 
 
f2eaa92
afb5c85
01c1073
cc93325
 
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
 
 
cc93325
afb5c85
 
 
cc93325
afb5c85
cc93325
afb5c85
 
cc93325
c0bee89
afb5c85
cc93325
afb5c85
dd5a3f3
cc93325
afb5c85
c0bee89
afb5c85
cc93325
b1c8d19
 
 
 
 
 
 
 
 
b3ba257
b1c8d19
 
 
 
 
 
 
afb5c85
cc93325
afb5c85
cc93325
afb5c85
 
 
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
 
 
cc93325
afb5c85
cc93325
afb5c85
 
cc93325
afb5c85
cc93325
afb5c85
 
 
 
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
 
cc93325
afb5c85
 
cc93325
b1c8d19
 
 
 
 
 
b3ba257
cc93325
afb5c85
dd5a3f3
cc93325
afb5c85
 
cc93325
68ab82f
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
 
 
 
 
 
 
c06e5da
afb5c85
c06e5da
afb5c85
 
 
 
 
 
 
c06e5da
afb5c85
 
 
cc93325
afb5c85
 
cc93325
afb5c85
cc93325
afb5c85
 
 
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
 
 
cc93325
afb5c85
cc93325
afb5c85
 
 
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
 
 
 
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
afb5c85
 
 
 
 
 
 
 
 
 
 
 
 
 
cc93325
afb5c85
cc93325
afb5c85
 
 
 
 
 
 
 
 
 
 
cc93325
 
afb5c85
cc93325
afb5c85
cc93325
afb5c85
cc93325
 
 
afb5c85
cc93325
 
 
afb5c85
cc93325
 
 
afb5c85
cc93325
 
 
afb5c85
 
 
 
cc93325
 
 
afb5c85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---
library_name: transformers
license: apache-2.0
datasets:
- isek-ai/danbooru-tags-2023
base_model: p1atdev/dart-v1-base
tags:
- trl
- sft
- optimum
- danbooru
inference: false
---

# Dart (Danbooru Tags Transformer) v1

This model is a fine-tuned Dart (**Da**nboo**r**u **T**ags Transformer) model that generates danbooru tags.

Demo: [🤗 Space](https://huggingface.co./spaces/p1atdev/danbooru-tags-transformer)

If you are a developer and want to finetune, it's recommended using the base version, [p1atdev/dart-v1-base](https://huggingface.co./p1atdev/dart-v1-base), instead 

## Usage

### Using AutoModel

🤗 Transformers library is required.

```bash
pip install -U transformers
```

```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

MODEL_NAME = "p1atdev/dart-v1-sft"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) # trust_remote_code is required for tokenizer
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16)

prompt = "<|bos|><rating>rating:sfw, rating:general</rating><copyright>original</copyright><character></character><general><|long|>1girl<|input_end|>"
inputs = tokenizer(prompt, return_tensors="pt").input_ids

with torch.no_grad():
  outputs = model.generate(inputs, generation_config=model.generation_config)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# rating:sfw, rating:general, 1girl, ahoge, braid, closed eyes, collared dress, dress, flower, full body, hair flower, hair ornament, long hair, night, night sky, outdoors, parted lips, pink flower, pink hair, short sleeves, sky, solo, straight hair, sunflower, very long hair, white flower
```

You can use `tokenizer.apply_chat_template` to simplify constructiing of prompts:

```py
inputs = tokenizer.apply_chat_template({
  "rating": "rating:sfw, rating:general",
  "copyright": "original",
  "character": "",
  "general": "1girl",
  "length": "<|long|>"
}, return_tensors="pt", tokenize=True) # tokenize=False to preview prompt
# same as input_ids of "<|bos|><rating>rating:sfw, rating:general</rating><copyright>original</copyright><character></character><general><|long|>1girl<|input_end|>"
with torch.no_grad():
  outputs = model.generate(inputs, generation_config=generation_config)
```

See [chat_templating document](https://huggingface.co./docs/transformers/main/en/chat_templating) for more detail about `apply_chat_template`.

#### Flash attention (optional)

Using flash attention can optimize computations, but it is currently only compatible with Linux.

```bash
pip install flash_attn
```

### Accelerate with ORTModel

🤗 Optimum library is also compatible, for the high performance inference using ONNX.

```bash
pip install "optimum[onnxruntime]"
```

Two ONNX models are provided:

- [Normal](./model.onnx)
- [Quantized](./model_quantized.onnx)

Both can be utilized based on the following code:

```py
import torch
from transformers import AutoTokenizer, GenerationConfig
from optimum.onnxruntime import ORTModelForCausalLM

MODEL_NAME = "p1atdev/dart-v1-sft"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)

# normal version
ort_model = ORTModelForCausalLM.from_pretrained(MODEL_NAME)

# qunatized version
# ort_model = ORTModelForCausalLM.from_pretrained(MODEL_NAME, file_name="model_quantized.onnx")

inputs = tokenizer.apply_chat_template({
  "rating": "rating:sfw, rating:general",
  "copyright": "original",
  "character": "",
  "general": "1girl",
  "length": "<|long|>"
}, return_tensors="pt", tokenize=True)

with torch.no_grad():
  outputs = ort_model.generate(inputs, generation_config=model.generation_config)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

### Prompt guide

Due to training with a specialized prompt format, **natural language is not supported**.

The trained sentences are essentially composed of the following elements, arranged in the strict order shown below:

- `<|bos|>`: The bos (begin of sentence) token
- `<rating>[RATING_PARENT], [RATING_CHILD]</rating>`: The block of rating tags
  - [RATING_PARENT]: `rating:sfw`, `rating:nsfw`
  - [RATING_CHILD]:
    - if `[RATING_PARENT]` is `rating:sfw`: `rating:general`, `rating:sensitive`
    - else: `rating:questionable`, `rating:explicit`
- `<copyright>[COPYRIGHT, ...]</copyright>`: The block of copyright tags.
  - [COPYRIGHT, ...]: All supported copyright tags can be seen in [here](https://huggingface.co./p1atdev/dart-v1-sft/tree/main/tags)
- `<character>[CHARACTER, ...]</character>`: The block of character tags.
  - [CHARACTER, ...]: All supported character tags can be seen in [here](https://huggingface.co./p1atdev/dart-v1-sft/tree/main/tags)
- `<general>[LENGTH_TOKEN][GENERAL, ...]<|input_end|>[COMPLETION]</general>`: The block of general tags.
  - [LENGTH_TOKEN]: A token to specify **total** amount of general tags.
    - Avaiable:
      - `<|very_short|>`: less than 10 tags
      - `<|short|>`: less than 20 tags
      - `<|long|>`: less than 40 tags (recommended)
      - `<|very_long|>`: more than 40 tags
  - [GENERAL, ...]:  All supported general tags can be seen in [here](https://huggingface.co./p1atdev/dart-v1-sft/tree/main/tags)
  - `<|input_end|>`: A tag to show the end of input. Set this token at last of prompt.
  - [COMPLETION]: The model complete tags in alphabetical order.
- `<|eos|>`: The eos (end of sentence) token

- Tags other than special tokens are separated by commas.
- You can place tags in any order you like in each block.

Example sentence:

```
<|bos|><rating>rating:sfw, rating:general</rating><copyright>vocaloid</copyright><character>hatsune miku</character><general><|long|>solo, 1girl, very long hair<|input_end|>blue hair, cowboy shot, ...</general><|eos|>
```

Therefore, to complete the tags, the input prompt should be as follows:

1. without any copyright and character tags

```
<|bos|><rating>rating:sfw, rating:general</rating><copyright></copyright><character></character><general><|very_long|>1girl, solo, cat ears<|input_end|>
```

2. specifing copyright and character tags

```
<|bos|><rating>rating:sfw, rating:general</rating><copyright>sousou no frieren</copyright><character>frieren</character><general><|long|>1girl, solo, from side<|input_end|>
```

## Model Details

### Model Description

- **Developed by:** Plat
- **Model type:** Causal language model
- **Language(s) (NLP):** Danbooru tags
- **License:** Apache-2.0

- **Demo:** Avaiable on [🤗Space](https://huggingface.co./spaces/p1atdev/danbooru-tags-transformer)

## Bias, Risks, and Limitations

Since this model is a pre-trained model, it cannot accommodate flexible specifications.

## Training Details

### Training Data

This model was trained with:

- [isek-ai/danbooru-tags-2023](https://huggingface.co./datasets/isek-ai/danbooru-tags-2023): 6M size of danbooru tags dataset since 2005 to 2023

Only data from 2020 onwards was used for SFT.

### Training Procedure 

Trained using 🤗 transformers' trainer.

#### Preprocessing

Preprocessing was conducted through the following process:

1. Remove data where `general` tags is null.
2. Remove `general` tags that appear less than 100 times.
3. Remove undesirable tags such as `watermark` and `bad anatomy`.
4. Remove based on the number of tags attached to a single post (following rules):
  - Remove if more than 100 for `general` tags.
  - Remove if more than 5 for `copyright` tags.
  - Remove if more than 10 for `character` tags.
5. Remove posts created before 2020
6. Set length token according to each tags length
7. Shuffle some tags in the following rule:
  - Include people tags (e.g. `1girl`, `no humans`) tags in the shuffle-group with a 95% probability, and do not do so with a 5% probability.
  - Get tags at a random percentage between 0% and 75% to create a shuffle-group.
  - Shuffle tags in shuffle-group and concatnate with `<|input_end|>` token and remains in alphabetical order.
8. Concatnate all categories

#### Training Hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1


## Evaluation

Evaluation has not been done yet and it needs to evaluate.

## Technical Specifications

### Model Architecture and Objective

The architecture of this model is [OPT (Open Pretrained Transformer)](https://huggingface.co./docs/transformers/model_doc/opt), but the position embeddings was not trained.

### Compute Infrastructure

In house

#### Hardware

1x RTX 3070 Ti

#### Software

- Dataset processing: [🤗 Datasets](https://github.com/huggingface/datasets)
- Training: [🤗 Transformers](https://github.com/huggingface/transformers)
- Optimizing: [🤗 Optimum](https://github.com/huggingface/optimum)
- SFT: [🤗 TRL](https://github.com/huggingface/trl)

## More Information [optional]

[More Information Needed]