--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: Sentiment-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str results: [] --- # Sentiment-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co./google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 20.1785 | 1.0 | 44 | 24.2987 | | 16.7918 | 2.0 | 88 | 13.0112 | | 10.2722 | 3.0 | 132 | 9.1399 | | 8.7351 | 4.0 | 176 | 8.7771 | | 8.1648 | 5.0 | 220 | 8.6202 | | 8.1662 | 6.0 | 264 | 8.5136 | | 8.0042 | 7.0 | 308 | 8.3971 | | 7.8946 | 8.0 | 352 | 8.1025 | | 7.4059 | 9.0 | 396 | 7.6197 | | 7.1363 | 10.0 | 440 | 7.3350 | | 6.9292 | 11.0 | 484 | 7.1825 | | 6.8455 | 12.0 | 528 | 7.0740 | | 6.5296 | 13.0 | 572 | 6.9423 | | 0.9019 | 14.0 | 616 | 0.6900 | | 0.7584 | 15.0 | 660 | 0.6856 | | 0.7245 | 16.0 | 704 | 0.6713 | | 0.7189 | 17.0 | 748 | 0.6693 | | 0.7258 | 18.0 | 792 | 0.6675 | | 0.7222 | 19.0 | 836 | 0.6668 | | 0.7112 | 20.0 | 880 | 0.6680 | | 0.7125 | 21.0 | 924 | 0.6645 | | 0.7038 | 22.0 | 968 | 0.6664 | | 0.719 | 23.0 | 1012 | 0.6638 | | 0.7022 | 24.0 | 1056 | 0.6621 | | 0.6961 | 25.0 | 1100 | 0.6653 | | 0.709 | 26.0 | 1144 | 0.6653 | | 0.6969 | 27.0 | 1188 | 0.6633 | | 0.7109 | 28.0 | 1232 | 0.6604 | | 0.6965 | 29.0 | 1276 | 0.6617 | | 0.7015 | 30.0 | 1320 | 0.6617 | | 0.7098 | 31.0 | 1364 | 0.6609 | | 0.6951 | 32.0 | 1408 | 0.6613 | | 0.6881 | 33.0 | 1452 | 0.6631 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1