---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:400
- loss:TripletLoss
widget:
- source_sentence: 'query: Ny duk til markise på verandaen.'
sentences:
- 'query: Boring og sprenging fjell'
- 'query: Solskjerming Duette gardiner'
- 'query: Bygge ark'
- source_sentence: 'query: Montering av kjøkken.'
sentences:
- 'query: Skaffe og montere Ikea-kjøkkenskap på vegg som trenger forsterkning'
- 'query: Ladestolpe til sameie'
- 'query: Sette opp ny baderoms innredning'
- source_sentence: 'query: Blikkenslager'
sentences:
- 'query: Drenering av enebolig med ca 125m2 grunnflate'
- 'query: Blikkenslager til mindre taklekkasje i overgang takstein og ventilasjonskanal/pipe'
- 'query: Bytte av glass'
- source_sentence: 'query: Montere Ikea kjøkken.'
sentences:
- 'query: Montering av lite epoq kjøkken'
- 'query: Audi 1999 - A6, 0 km - Oljeskift'
- 'query: Legging av vinyl på baderomsgulv'
- source_sentence: 'query: Bygging av platting'
sentences:
- 'query: Fasadevask - Når som helst'
- 'query: Terrasse'
- 'query: Sette inn takvinduer + vinduer i stuen.'
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.78
name: Cosine Accuracy
- type: dot_accuracy
value: 0.28
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.79
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.78
name: Euclidean Accuracy
- type: max_accuracy
value: 0.79
name: Max Accuracy
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ostoveland/test7")
# Run inference
sentences = [
'query: Bygging av platting',
'query: Terrasse',
'query: Fasadevask - Når som helst',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:---------|
| cosine_accuracy | 0.78 |
| dot_accuracy | 0.28 |
| manhattan_accuracy | 0.79 |
| euclidean_accuracy | 0.78 |
| **max_accuracy** | **0.79** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 400 training samples
* Columns: sentence_0
, sentence_1
, and sentence_2
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
query: Bytte av kledning på hus
| query: utskifting av kledning.
| query: Innsetting av vedovn Dovre varm 3
|
| query: Bytte gammel sirkulasjonspumpe til radiatorer borettslag Oslo
| query: Sjekk av Upoterm anlegg for vannbåren gulvvarme
| query: Nytt gulv
|
| query: Renovere gammel grusvei
| query: Klippe hekk.
| query: Mure ringmur/grunnmur og støpe såle
|
* Loss: [TripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters