ostoveland commited on
Commit
3fe0e6c
1 Parent(s): d781ffe

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - dot_accuracy
9
+ - manhattan_accuracy
10
+ - euclidean_accuracy
11
+ - max_accuracy
12
+ pipeline_tag: sentence-similarity
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:400
19
+ - loss:TripletLoss
20
+ widget:
21
+ - source_sentence: 'query: Ny duk til markise på verandaen.'
22
+ sentences:
23
+ - 'query: Boring og sprenging fjell'
24
+ - 'query: Solskjerming Duette gardiner'
25
+ - 'query: Bygge ark'
26
+ - source_sentence: 'query: Montering av kjøkken.'
27
+ sentences:
28
+ - 'query: Skaffe og montere Ikea-kjøkkenskap på vegg som trenger forsterkning'
29
+ - 'query: Ladestolpe til sameie'
30
+ - 'query: Sette opp ny baderoms innredning'
31
+ - source_sentence: 'query: Blikkenslager'
32
+ sentences:
33
+ - 'query: Drenering av enebolig med ca 125m2 grunnflate'
34
+ - 'query: Blikkenslager til mindre taklekkasje i overgang takstein og ventilasjonskanal/pipe'
35
+ - 'query: Bytte av glass'
36
+ - source_sentence: 'query: Montere Ikea kjøkken.'
37
+ sentences:
38
+ - 'query: Montering av lite epoq kjøkken'
39
+ - 'query: Audi 1999 - A6, 0 km - Oljeskift'
40
+ - 'query: Legging av vinyl på baderomsgulv'
41
+ - source_sentence: 'query: Bygging av platting'
42
+ sentences:
43
+ - 'query: Fasadevask - Når som helst'
44
+ - 'query: Terrasse'
45
+ - 'query: Sette inn takvinduer + vinduer i stuen.'
46
+ model-index:
47
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
48
+ results:
49
+ - task:
50
+ type: triplet
51
+ name: Triplet
52
+ dataset:
53
+ name: Unknown
54
+ type: unknown
55
+ metrics:
56
+ - type: cosine_accuracy
57
+ value: 0.78
58
+ name: Cosine Accuracy
59
+ - type: dot_accuracy
60
+ value: 0.28
61
+ name: Dot Accuracy
62
+ - type: manhattan_accuracy
63
+ value: 0.79
64
+ name: Manhattan Accuracy
65
+ - type: euclidean_accuracy
66
+ value: 0.78
67
+ name: Euclidean Accuracy
68
+ - type: max_accuracy
69
+ value: 0.79
70
+ name: Max Accuracy
71
+ ---
72
+
73
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
74
+
75
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
76
+
77
+ ## Model Details
78
+
79
+ ### Model Description
80
+ - **Model Type:** Sentence Transformer
81
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
82
+ - **Maximum Sequence Length:** 128 tokens
83
+ - **Output Dimensionality:** 384 tokens
84
+ - **Similarity Function:** Cosine Similarity
85
+ <!-- - **Training Dataset:** Unknown -->
86
+ <!-- - **Language:** Unknown -->
87
+ <!-- - **License:** Unknown -->
88
+
89
+ ### Model Sources
90
+
91
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
92
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
93
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
94
+
95
+ ### Full Model Architecture
96
+
97
+ ```
98
+ SentenceTransformer(
99
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
100
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
101
+ )
102
+ ```
103
+
104
+ ## Usage
105
+
106
+ ### Direct Usage (Sentence Transformers)
107
+
108
+ First install the Sentence Transformers library:
109
+
110
+ ```bash
111
+ pip install -U sentence-transformers
112
+ ```
113
+
114
+ Then you can load this model and run inference.
115
+ ```python
116
+ from sentence_transformers import SentenceTransformer
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SentenceTransformer("ostoveland/test7")
120
+ # Run inference
121
+ sentences = [
122
+ 'query: Bygging av platting',
123
+ 'query: Terrasse',
124
+ 'query: Fasadevask - Når som helst',
125
+ ]
126
+ embeddings = model.encode(sentences)
127
+ print(embeddings.shape)
128
+ # [3, 384]
129
+
130
+ # Get the similarity scores for the embeddings
131
+ similarities = model.similarity(embeddings, embeddings)
132
+ print(similarities.shape)
133
+ # [3, 3]
134
+ ```
135
+
136
+ <!--
137
+ ### Direct Usage (Transformers)
138
+
139
+ <details><summary>Click to see the direct usage in Transformers</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Downstream Usage (Sentence Transformers)
146
+
147
+ You can finetune this model on your own dataset.
148
+
149
+ <details><summary>Click to expand</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Out-of-Scope Use
156
+
157
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
158
+ -->
159
+
160
+ ## Evaluation
161
+
162
+ ### Metrics
163
+
164
+ #### Triplet
165
+
166
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
167
+
168
+ | Metric | Value |
169
+ |:-------------------|:---------|
170
+ | cosine_accuracy | 0.78 |
171
+ | dot_accuracy | 0.28 |
172
+ | manhattan_accuracy | 0.79 |
173
+ | euclidean_accuracy | 0.78 |
174
+ | **max_accuracy** | **0.79** |
175
+
176
+ <!--
177
+ ## Bias, Risks and Limitations
178
+
179
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
180
+ -->
181
+
182
+ <!--
183
+ ### Recommendations
184
+
185
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
186
+ -->
187
+
188
+ ## Training Details
189
+
190
+ ### Training Dataset
191
+
192
+ #### Unnamed Dataset
193
+
194
+
195
+ * Size: 400 training samples
196
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
197
+ * Approximate statistics based on the first 1000 samples:
198
+ | | sentence_0 | sentence_1 | sentence_2 |
199
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
200
+ | type | string | string | string |
201
+ | details | <ul><li>min: 7 tokens</li><li>mean: 13.02 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.3 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.54 tokens</li><li>max: 51 tokens</li></ul> |
202
+ * Samples:
203
+ | sentence_0 | sentence_1 | sentence_2 |
204
+ |:----------------------------------------------------------------------------------|:--------------------------------------------------------------------|:--------------------------------------------------------|
205
+ | <code>query: Bytte av kledning på hus</code> | <code>query: utskifting av kledning.</code> | <code>query: Innsetting av vedovn Dovre varm 3</code> |
206
+ | <code>query: Bytte gammel sirkulasjonspumpe til radiatorer borettslag Oslo</code> | <code>query: Sjekk av Upoterm anlegg for vannbåren gulvvarme</code> | <code>query: Nytt gulv</code> |
207
+ | <code>query: Renovere gammel grusvei</code> | <code>query: Klippe hekk.</code> | <code>query: Mure ringmur/grunnmur og støpe såle</code> |
208
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
209
+ ```json
210
+ {
211
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
212
+ "triplet_margin": 1
213
+ }
214
+ ```
215
+
216
+ ### Training Hyperparameters
217
+ #### Non-Default Hyperparameters
218
+
219
+ - `eval_strategy`: steps
220
+ - `per_device_train_batch_size`: 16
221
+ - `per_device_eval_batch_size`: 16
222
+ - `num_train_epochs`: 1
223
+ - `multi_dataset_batch_sampler`: round_robin
224
+
225
+ #### All Hyperparameters
226
+ <details><summary>Click to expand</summary>
227
+
228
+ - `overwrite_output_dir`: False
229
+ - `do_predict`: False
230
+ - `eval_strategy`: steps
231
+ - `prediction_loss_only`: True
232
+ - `per_device_train_batch_size`: 16
233
+ - `per_device_eval_batch_size`: 16
234
+ - `per_gpu_train_batch_size`: None
235
+ - `per_gpu_eval_batch_size`: None
236
+ - `gradient_accumulation_steps`: 1
237
+ - `eval_accumulation_steps`: None
238
+ - `learning_rate`: 5e-05
239
+ - `weight_decay`: 0.0
240
+ - `adam_beta1`: 0.9
241
+ - `adam_beta2`: 0.999
242
+ - `adam_epsilon`: 1e-08
243
+ - `max_grad_norm`: 1
244
+ - `num_train_epochs`: 1
245
+ - `max_steps`: -1
246
+ - `lr_scheduler_type`: linear
247
+ - `lr_scheduler_kwargs`: {}
248
+ - `warmup_ratio`: 0.0
249
+ - `warmup_steps`: 0
250
+ - `log_level`: passive
251
+ - `log_level_replica`: warning
252
+ - `log_on_each_node`: True
253
+ - `logging_nan_inf_filter`: True
254
+ - `save_safetensors`: True
255
+ - `save_on_each_node`: False
256
+ - `save_only_model`: False
257
+ - `restore_callback_states_from_checkpoint`: False
258
+ - `no_cuda`: False
259
+ - `use_cpu`: False
260
+ - `use_mps_device`: False
261
+ - `seed`: 42
262
+ - `data_seed`: None
263
+ - `jit_mode_eval`: False
264
+ - `use_ipex`: False
265
+ - `bf16`: False
266
+ - `fp16`: False
267
+ - `fp16_opt_level`: O1
268
+ - `half_precision_backend`: auto
269
+ - `bf16_full_eval`: False
270
+ - `fp16_full_eval`: False
271
+ - `tf32`: None
272
+ - `local_rank`: 0
273
+ - `ddp_backend`: None
274
+ - `tpu_num_cores`: None
275
+ - `tpu_metrics_debug`: False
276
+ - `debug`: []
277
+ - `dataloader_drop_last`: False
278
+ - `dataloader_num_workers`: 0
279
+ - `dataloader_prefetch_factor`: None
280
+ - `past_index`: -1
281
+ - `disable_tqdm`: False
282
+ - `remove_unused_columns`: True
283
+ - `label_names`: None
284
+ - `load_best_model_at_end`: False
285
+ - `ignore_data_skip`: False
286
+ - `fsdp`: []
287
+ - `fsdp_min_num_params`: 0
288
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
289
+ - `fsdp_transformer_layer_cls_to_wrap`: None
290
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
291
+ - `deepspeed`: None
292
+ - `label_smoothing_factor`: 0.0
293
+ - `optim`: adamw_torch
294
+ - `optim_args`: None
295
+ - `adafactor`: False
296
+ - `group_by_length`: False
297
+ - `length_column_name`: length
298
+ - `ddp_find_unused_parameters`: None
299
+ - `ddp_bucket_cap_mb`: None
300
+ - `ddp_broadcast_buffers`: False
301
+ - `dataloader_pin_memory`: True
302
+ - `dataloader_persistent_workers`: False
303
+ - `skip_memory_metrics`: True
304
+ - `use_legacy_prediction_loop`: False
305
+ - `push_to_hub`: False
306
+ - `resume_from_checkpoint`: None
307
+ - `hub_model_id`: None
308
+ - `hub_strategy`: every_save
309
+ - `hub_private_repo`: False
310
+ - `hub_always_push`: False
311
+ - `gradient_checkpointing`: False
312
+ - `gradient_checkpointing_kwargs`: None
313
+ - `include_inputs_for_metrics`: False
314
+ - `eval_do_concat_batches`: True
315
+ - `fp16_backend`: auto
316
+ - `push_to_hub_model_id`: None
317
+ - `push_to_hub_organization`: None
318
+ - `mp_parameters`:
319
+ - `auto_find_batch_size`: False
320
+ - `full_determinism`: False
321
+ - `torchdynamo`: None
322
+ - `ray_scope`: last
323
+ - `ddp_timeout`: 1800
324
+ - `torch_compile`: False
325
+ - `torch_compile_backend`: None
326
+ - `torch_compile_mode`: None
327
+ - `dispatch_batches`: None
328
+ - `split_batches`: None
329
+ - `include_tokens_per_second`: False
330
+ - `include_num_input_tokens_seen`: False
331
+ - `neftune_noise_alpha`: None
332
+ - `optim_target_modules`: None
333
+ - `batch_eval_metrics`: False
334
+ - `batch_sampler`: batch_sampler
335
+ - `multi_dataset_batch_sampler`: round_robin
336
+
337
+ </details>
338
+
339
+ ### Training Logs
340
+ | Epoch | Step | max_accuracy |
341
+ |:-----:|:----:|:------------:|
342
+ | 1.0 | 25 | 0.79 |
343
+
344
+
345
+ ### Framework Versions
346
+ - Python: 3.10.12
347
+ - Sentence Transformers: 3.0.1
348
+ - Transformers: 4.41.2
349
+ - PyTorch: 2.3.0+cu121
350
+ - Accelerate: 0.31.0
351
+ - Datasets: 2.20.0
352
+ - Tokenizers: 0.19.1
353
+
354
+ ## Citation
355
+
356
+ ### BibTeX
357
+
358
+ #### Sentence Transformers
359
+ ```bibtex
360
+ @inproceedings{reimers-2019-sentence-bert,
361
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
362
+ author = "Reimers, Nils and Gurevych, Iryna",
363
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
364
+ month = "11",
365
+ year = "2019",
366
+ publisher = "Association for Computational Linguistics",
367
+ url = "https://arxiv.org/abs/1908.10084",
368
+ }
369
+ ```
370
+
371
+ #### TripletLoss
372
+ ```bibtex
373
+ @misc{hermans2017defense,
374
+ title={In Defense of the Triplet Loss for Person Re-Identification},
375
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
376
+ year={2017},
377
+ eprint={1703.07737},
378
+ archivePrefix={arXiv},
379
+ primaryClass={cs.CV}
380
+ }
381
+ ```
382
+
383
+ <!--
384
+ ## Glossary
385
+
386
+ *Clearly define terms in order to be accessible across audiences.*
387
+ -->
388
+
389
+ <!--
390
+ ## Model Card Authors
391
+
392
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
393
+ -->
394
+
395
+ <!--
396
+ ## Model Card Contact
397
+
398
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
399
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<extra_token>": 250002
3
+ }
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f3665a7334f3ac4260de74cb907f55b8c9db76e482ab40e4814531f24444a9e
3
+ size 470682214
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<extra_token>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "cls_token": {
19
+ "content": "<s>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "eos_token": {
26
+ "content": "</s>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "mask_token": {
33
+ "content": "<mask>",
34
+ "lstrip": true,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ },
39
+ "pad_token": {
40
+ "content": "<pad>",
41
+ "lstrip": false,
42
+ "normalized": false,
43
+ "rstrip": false,
44
+ "single_word": false
45
+ },
46
+ "sep_token": {
47
+ "content": "</s>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false
52
+ },
53
+ "unk_token": {
54
+ "content": "<unk>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false
59
+ }
60
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98a81553a32072d8bf63216b1ea1ccfaa6922267a246a5102967197e888d3ffa
3
+ size 17083177
tokenizer_config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "250002": {
44
+ "content": "<extra_token>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "additional_special_tokens": [
53
+ "<extra_token>"
54
+ ],
55
+ "bos_token": "<s>",
56
+ "clean_up_tokenization_spaces": true,
57
+ "cls_token": "<s>",
58
+ "do_lower_case": true,
59
+ "eos_token": "</s>",
60
+ "mask_token": "<mask>",
61
+ "max_length": 128,
62
+ "model_max_length": 128,
63
+ "pad_to_multiple_of": null,
64
+ "pad_token": "<pad>",
65
+ "pad_token_type_id": 0,
66
+ "padding": "max_length",
67
+ "padding_side": "right",
68
+ "return_tensors": "pt",
69
+ "sep_token": "</s>",
70
+ "stride": 0,
71
+ "strip_accents": null,
72
+ "tokenize_chinese_chars": true,
73
+ "tokenizer_class": "BertTokenizer",
74
+ "truncation": true,
75
+ "truncation_side": "right",
76
+ "truncation_strategy": "longest_first",
77
+ "unk_token": "<unk>"
78
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260