--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy base_model: google/vit-base-patch16-224-in21k model-index: - name: vit-artworkclassifier results: - task: type: image-classification name: Image Classification dataset: name: imagefolder type: imagefolder config: artbench10-vit split: test args: artbench10-vit metrics: - type: accuracy value: 0.5947786606129398 name: Accuracy --- # vit-artworkclassifier This model returns the artwork style of any image input. This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. This is a subset of the artbench-10 dataset (https://www.kaggle.com/datasets/alexanderliao/artbench10), with a train set of 1000 artworks per class and a test set of 100 artworks per class. It achieves the following results on the evaluation set: - Loss: 1.1392 - Accuracy: 0.5948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5906 | 0.36 | 100 | 1.4709 | 0.4847 | | 1.3395 | 0.72 | 200 | 1.3208 | 0.5074 | | 1.1461 | 1.08 | 300 | 1.3363 | 0.5165 | | 0.9593 | 1.44 | 400 | 1.1790 | 0.5846 | | 0.8761 | 1.8 | 500 | 1.1252 | 0.5902 | | 0.5922 | 2.16 | 600 | 1.1392 | 0.5948 | | 0.4803 | 2.52 | 700 | 1.1560 | 0.5936 | | 0.4454 | 2.88 | 800 | 1.1545 | 0.6118 | | 0.2271 | 3.24 | 900 | 1.2284 | 0.6039 | | 0.207 | 3.6 | 1000 | 1.2625 | 0.5959 | | 0.1958 | 3.96 | 1100 | 1.2621 | 0.6005 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2 ### Code to Run def vit_classify(image): vit = ViTForImageClassification.from_pretrained("oschamp/vit-artworkclassifier") vit.eval() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') vit.to(device) model_name_or_path = 'google/vit-base-patch16-224-in21k' feature_extractor = ViTFeatureExtractor.from_pretrained(model_name_or_path) #LOAD IMAGE encoding = feature_extractor(images=image, return_tensors="pt") encoding.keys() pixel_values = encoding['pixel_values'].to(device) outputs = vit(pixel_values) logits = outputs.logits prediction = logits.argmax(-1) return prediction.item() #vit.config.id2label[prediction.item()]