update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- wmt16
|
7 |
+
model-index:
|
8 |
+
- name: t5-turkish-to-english
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-turkish-to-english
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the wmt16 dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0282
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 500
|
45 |
+
- num_epochs: 3
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
51 |
+
| 0.6168 | 0.02 | 500 | 0.0497 |
|
52 |
+
| 0.0832 | 0.04 | 1000 | 0.0448 |
|
53 |
+
| 0.0791 | 0.06 | 1500 | 0.0424 |
|
54 |
+
| 0.0718 | 0.08 | 2000 | 0.0413 |
|
55 |
+
| 0.0661 | 0.1 | 2500 | 0.0406 |
|
56 |
+
| 0.0669 | 0.12 | 3000 | 0.0399 |
|
57 |
+
| 0.065 | 0.14 | 3500 | 0.0389 |
|
58 |
+
| 0.0627 | 0.16 | 4000 | 0.0389 |
|
59 |
+
| 0.0637 | 0.17 | 4500 | 0.0396 |
|
60 |
+
| 0.0599 | 0.19 | 5000 | 0.0376 |
|
61 |
+
| 0.0601 | 0.21 | 5500 | 0.0368 |
|
62 |
+
| 0.0594 | 0.23 | 6000 | 0.0379 |
|
63 |
+
| 0.0578 | 0.25 | 6500 | 0.0371 |
|
64 |
+
| 0.0577 | 0.27 | 7000 | 0.0383 |
|
65 |
+
| 0.0566 | 0.29 | 7500 | 0.0377 |
|
66 |
+
| 0.0554 | 0.31 | 8000 | 0.0351 |
|
67 |
+
| 0.0554 | 0.33 | 8500 | 0.0347 |
|
68 |
+
| 0.0546 | 0.35 | 9000 | 0.0351 |
|
69 |
+
| 0.0564 | 0.37 | 9500 | 0.0356 |
|
70 |
+
| 0.0533 | 0.39 | 10000 | 0.0340 |
|
71 |
+
| 0.0515 | 0.41 | 10500 | 0.0339 |
|
72 |
+
| 0.0523 | 0.43 | 11000 | 0.0337 |
|
73 |
+
| 0.0528 | 0.45 | 11500 | 0.0337 |
|
74 |
+
| 0.0536 | 0.47 | 12000 | 0.0332 |
|
75 |
+
| 0.0501 | 0.49 | 12500 | 0.0334 |
|
76 |
+
| 0.0493 | 0.51 | 13000 | 0.0332 |
|
77 |
+
| 0.0504 | 0.52 | 13500 | 0.0331 |
|
78 |
+
| 0.0484 | 0.54 | 14000 | 0.0328 |
|
79 |
+
| 0.0496 | 0.56 | 14500 | 0.0327 |
|
80 |
+
| 0.0469 | 0.58 | 15000 | 0.0331 |
|
81 |
+
| 0.0483 | 0.6 | 15500 | 0.0329 |
|
82 |
+
| 0.0477 | 0.62 | 16000 | 0.0326 |
|
83 |
+
| 0.0492 | 0.64 | 16500 | 0.0326 |
|
84 |
+
| 0.0482 | 0.66 | 17000 | 0.0322 |
|
85 |
+
| 0.0468 | 0.68 | 17500 | 0.0323 |
|
86 |
+
| 0.0474 | 0.7 | 18000 | 0.0320 |
|
87 |
+
| 0.0463 | 0.72 | 18500 | 0.0321 |
|
88 |
+
| 0.048 | 0.74 | 19000 | 0.0319 |
|
89 |
+
| 0.0463 | 0.76 | 19500 | 0.0319 |
|
90 |
+
| 0.0467 | 0.78 | 20000 | 0.0316 |
|
91 |
+
| 0.0457 | 0.8 | 20500 | 0.0319 |
|
92 |
+
| 0.0463 | 0.82 | 21000 | 0.0320 |
|
93 |
+
| 0.045 | 0.84 | 21500 | 0.0317 |
|
94 |
+
| 0.0442 | 0.86 | 22000 | 0.0314 |
|
95 |
+
| 0.0462 | 0.87 | 22500 | 0.0313 |
|
96 |
+
| 0.0453 | 0.89 | 23000 | 0.0313 |
|
97 |
+
| 0.0455 | 0.91 | 23500 | 0.0316 |
|
98 |
+
| 0.0459 | 0.93 | 24000 | 0.0311 |
|
99 |
+
| 0.0435 | 0.95 | 24500 | 0.0312 |
|
100 |
+
| 0.0451 | 0.97 | 25000 | 0.0310 |
|
101 |
+
| 0.043 | 0.99 | 25500 | 0.0310 |
|
102 |
+
| 0.0429 | 1.01 | 26000 | 0.0306 |
|
103 |
+
| 0.0423 | 1.03 | 26500 | 0.0309 |
|
104 |
+
| 0.0418 | 1.05 | 27000 | 0.0309 |
|
105 |
+
| 0.0418 | 1.07 | 27500 | 0.0308 |
|
106 |
+
| 0.0414 | 1.09 | 28000 | 0.0307 |
|
107 |
+
| 0.0426 | 1.11 | 28500 | 0.0308 |
|
108 |
+
| 0.0411 | 1.13 | 29000 | 0.0306 |
|
109 |
+
| 0.0414 | 1.15 | 29500 | 0.0310 |
|
110 |
+
| 0.0411 | 1.17 | 30000 | 0.0305 |
|
111 |
+
| 0.0424 | 1.19 | 30500 | 0.0305 |
|
112 |
+
| 0.0419 | 1.21 | 31000 | 0.0307 |
|
113 |
+
| 0.0415 | 1.22 | 31500 | 0.0304 |
|
114 |
+
| 0.0403 | 1.24 | 32000 | 0.0303 |
|
115 |
+
| 0.0411 | 1.26 | 32500 | 0.0302 |
|
116 |
+
| 0.0414 | 1.28 | 33000 | 0.0304 |
|
117 |
+
| 0.0412 | 1.3 | 33500 | 0.0301 |
|
118 |
+
| 0.0404 | 1.32 | 34000 | 0.0304 |
|
119 |
+
| 0.0403 | 1.34 | 34500 | 0.0304 |
|
120 |
+
| 0.0415 | 1.36 | 35000 | 0.0302 |
|
121 |
+
| 0.0389 | 1.38 | 35500 | 0.0303 |
|
122 |
+
| 0.0401 | 1.4 | 36000 | 0.0300 |
|
123 |
+
| 0.0393 | 1.42 | 36500 | 0.0301 |
|
124 |
+
| 0.0399 | 1.44 | 37000 | 0.0297 |
|
125 |
+
| 0.0404 | 1.46 | 37500 | 0.0297 |
|
126 |
+
| 0.0404 | 1.48 | 38000 | 0.0298 |
|
127 |
+
| 0.04 | 1.5 | 38500 | 0.0296 |
|
128 |
+
| 0.0403 | 1.52 | 39000 | 0.0296 |
|
129 |
+
| 0.04 | 1.54 | 39500 | 0.0294 |
|
130 |
+
| 0.0392 | 1.56 | 40000 | 0.0295 |
|
131 |
+
| 0.0392 | 1.57 | 40500 | 0.0295 |
|
132 |
+
| 0.0388 | 1.59 | 41000 | 0.0296 |
|
133 |
+
| 0.0398 | 1.61 | 41500 | 0.0297 |
|
134 |
+
| 0.0388 | 1.63 | 42000 | 0.0293 |
|
135 |
+
| 0.0385 | 1.65 | 42500 | 0.0294 |
|
136 |
+
| 0.0392 | 1.67 | 43000 | 0.0291 |
|
137 |
+
| 0.0384 | 1.69 | 43500 | 0.0293 |
|
138 |
+
| 0.0384 | 1.71 | 44000 | 0.0294 |
|
139 |
+
| 0.0395 | 1.73 | 44500 | 0.0291 |
|
140 |
+
| 0.0391 | 1.75 | 45000 | 0.0293 |
|
141 |
+
| 0.0375 | 1.77 | 45500 | 0.0293 |
|
142 |
+
| 0.0375 | 1.79 | 46000 | 0.0294 |
|
143 |
+
| 0.0388 | 1.81 | 46500 | 0.0292 |
|
144 |
+
| 0.0392 | 1.83 | 47000 | 0.0293 |
|
145 |
+
| 0.0382 | 1.85 | 47500 | 0.0294 |
|
146 |
+
| 0.038 | 1.87 | 48000 | 0.0293 |
|
147 |
+
| 0.0388 | 1.89 | 48500 | 0.0292 |
|
148 |
+
| 0.0383 | 1.91 | 49000 | 0.0290 |
|
149 |
+
| 0.0381 | 1.92 | 49500 | 0.0292 |
|
150 |
+
| 0.0388 | 1.94 | 50000 | 0.0290 |
|
151 |
+
| 0.0378 | 1.96 | 50500 | 0.0289 |
|
152 |
+
| 0.0391 | 1.98 | 51000 | 0.0290 |
|
153 |
+
| 0.0379 | 2.0 | 51500 | 0.0289 |
|
154 |
+
| 0.0364 | 2.02 | 52000 | 0.0289 |
|
155 |
+
| 0.0366 | 2.04 | 52500 | 0.0291 |
|
156 |
+
| 0.0362 | 2.06 | 53000 | 0.0291 |
|
157 |
+
| 0.0359 | 2.08 | 53500 | 0.0289 |
|
158 |
+
| 0.0367 | 2.1 | 54000 | 0.0291 |
|
159 |
+
| 0.0368 | 2.12 | 54500 | 0.0290 |
|
160 |
+
| 0.0359 | 2.14 | 55000 | 0.0288 |
|
161 |
+
| 0.0359 | 2.16 | 55500 | 0.0289 |
|
162 |
+
| 0.036 | 2.18 | 56000 | 0.0289 |
|
163 |
+
| 0.0362 | 2.2 | 56500 | 0.0288 |
|
164 |
+
| 0.0359 | 2.22 | 57000 | 0.0287 |
|
165 |
+
| 0.0374 | 2.24 | 57500 | 0.0287 |
|
166 |
+
| 0.0353 | 2.26 | 58000 | 0.0286 |
|
167 |
+
| 0.0351 | 2.27 | 58500 | 0.0287 |
|
168 |
+
| 0.0348 | 2.29 | 59000 | 0.0286 |
|
169 |
+
| 0.0355 | 2.31 | 59500 | 0.0286 |
|
170 |
+
| 0.0362 | 2.33 | 60000 | 0.0287 |
|
171 |
+
| 0.0361 | 2.35 | 60500 | 0.0287 |
|
172 |
+
| 0.0354 | 2.37 | 61000 | 0.0286 |
|
173 |
+
| 0.036 | 2.39 | 61500 | 0.0284 |
|
174 |
+
| 0.0341 | 2.41 | 62000 | 0.0285 |
|
175 |
+
| 0.0348 | 2.43 | 62500 | 0.0284 |
|
176 |
+
| 0.036 | 2.45 | 63000 | 0.0285 |
|
177 |
+
| 0.0351 | 2.47 | 63500 | 0.0284 |
|
178 |
+
| 0.0354 | 2.49 | 64000 | 0.0284 |
|
179 |
+
| 0.0372 | 2.51 | 64500 | 0.0285 |
|
180 |
+
| 0.035 | 2.53 | 65000 | 0.0285 |
|
181 |
+
| 0.0348 | 2.55 | 65500 | 0.0284 |
|
182 |
+
| 0.0353 | 2.57 | 66000 | 0.0283 |
|
183 |
+
| 0.0353 | 2.59 | 66500 | 0.0283 |
|
184 |
+
| 0.0352 | 2.6 | 67000 | 0.0283 |
|
185 |
+
| 0.0357 | 2.62 | 67500 | 0.0283 |
|
186 |
+
| 0.035 | 2.64 | 68000 | 0.0283 |
|
187 |
+
| 0.0352 | 2.66 | 68500 | 0.0283 |
|
188 |
+
| 0.035 | 2.68 | 69000 | 0.0282 |
|
189 |
+
| 0.0348 | 2.7 | 69500 | 0.0282 |
|
190 |
+
| 0.0344 | 2.72 | 70000 | 0.0281 |
|
191 |
+
| 0.0357 | 2.74 | 70500 | 0.0282 |
|
192 |
+
| 0.0348 | 2.76 | 71000 | 0.0282 |
|
193 |
+
| 0.0349 | 2.78 | 71500 | 0.0281 |
|
194 |
+
| 0.0365 | 2.8 | 72000 | 0.0282 |
|
195 |
+
| 0.0354 | 2.82 | 72500 | 0.0282 |
|
196 |
+
| 0.0359 | 2.84 | 73000 | 0.0281 |
|
197 |
+
| 0.0343 | 2.86 | 73500 | 0.0282 |
|
198 |
+
| 0.0343 | 2.88 | 74000 | 0.0281 |
|
199 |
+
| 0.0346 | 2.9 | 74500 | 0.0282 |
|
200 |
+
| 0.0357 | 2.92 | 75000 | 0.0282 |
|
201 |
+
| 0.0351 | 2.94 | 75500 | 0.0282 |
|
202 |
+
| 0.0355 | 2.95 | 76000 | 0.0282 |
|
203 |
+
| 0.0351 | 2.97 | 76500 | 0.0282 |
|
204 |
+
| 0.0359 | 2.99 | 77000 | 0.0282 |
|
205 |
+
|
206 |
+
|
207 |
+
### Framework versions
|
208 |
+
|
209 |
+
- Transformers 4.20.1
|
210 |
+
- Pytorch 1.11.0
|
211 |
+
- Datasets 2.1.0
|
212 |
+
- Tokenizers 0.12.1
|