osamaifti commited on
Commit
47c4e5b
1 Parent(s): e30933e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -0
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tkinter as tk
2
+ from tkinter import filedialog
3
+ import cv2
4
+ from PIL import Image, ImageTk
5
+ import numpy as np
6
+ from tensorflow.keras.models import load_model
7
+
8
+ class ShelfClassifierApp:
9
+ def __init__(self, master):
10
+ self.master = master
11
+ self.master.title("Shelf Classifier")
12
+
13
+ self.model = load_model('your_model.h5') # Load your model
14
+
15
+ self.canvas = tk.Canvas(master, width=300, height=300)
16
+ self.canvas.pack()
17
+
18
+ self.load_button = tk.Button(master, text="Load Image", command=self.load_image)
19
+ self.load_button.pack()
20
+
21
+ self.classify_button = tk.Button(master, text="Classify", command=self.classify_image)
22
+ self.classify_button.pack()
23
+
24
+ self.result_label = tk.Label(master, text="")
25
+ self.result_label.pack()
26
+
27
+ self.image = None
28
+
29
+ def load_image(self):
30
+ file_path = filedialog.askopenfilename()
31
+ if file_path:
32
+ self.image = cv2.imread(file_path)
33
+ self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB)
34
+ self.display_image(self.image)
35
+
36
+ def display_image(self, image):
37
+ image = Image.fromarray(image)
38
+ image = ImageTk.PhotoImage(image)
39
+ self.canvas.create_image(0, 0, anchor=tk.NW, image=image)
40
+ self.canvas.image = image
41
+
42
+ def classify_image(self):
43
+ if self.image is not None:
44
+ # Preprocess the image
45
+ resized_image = cv2.resize(self.image, (224, 224))
46
+ resized_image = resized_image.astype('float32') / 255
47
+ resized_image = np.expand_dims(resized_image, axis=0)
48
+
49
+ # Make prediction
50
+ prediction = self.model.predict(resized_image)
51
+
52
+ # Postprocess the prediction
53
+ class_index = np.argmax(prediction)
54
+ class_label = "Disorganized or Empty" if class_index == 1 else "Organized"
55
+
56
+ # Draw bounding box if shelf is disorganized or empty
57
+ if class_index == 1:
58
+ # Draw red rectangle
59
+ image_with_box = cv2.rectangle(self.image, (0, 0), (self.image.shape[1], self.image.shape[0]), (255, 0, 0), 2)
60
+ self.display_image(image_with_box)
61
+ else:
62
+ self.display_image(self.image)
63
+
64
+ self.result_label.config(text=class_label)
65
+ else:
66
+ self.result_label.config(text="Please load an image first")
67
+
68
+ def main():
69
+ root = tk.Tk()
70
+ app = ShelfClassifierApp(root)
71
+ root.mainloop()
72
+
73
+ if __name__ == "__main__":
74
+ main()