|
import tkinter as tk |
|
from tkinter import filedialog |
|
import cv2 |
|
from PIL import Image, ImageTk |
|
import numpy as np |
|
from tensorflow.keras.models import load_model |
|
|
|
class ShelfClassifierApp: |
|
def __init__(self, master): |
|
self.master = master |
|
self.master.title("Shelf Classifier") |
|
|
|
self.model = load_model('saved_model.h5') |
|
|
|
self.canvas = tk.Canvas(master, width=300, height=300) |
|
self.canvas.pack() |
|
|
|
self.load_button = tk.Button(master, text="Load Image", command=self.load_image) |
|
self.load_button.pack() |
|
|
|
self.classify_button = tk.Button(master, text="Classify", command=self.classify_image) |
|
self.classify_button.pack() |
|
|
|
self.result_label = tk.Label(master, text="") |
|
self.result_label.pack() |
|
|
|
self.image = None |
|
|
|
def load_image(self): |
|
file_path = filedialog.askopenfilename() |
|
if file_path: |
|
self.image = cv2.imread(file_path) |
|
self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB) |
|
self.display_image(self.image) |
|
|
|
def display_image(self, image): |
|
image = Image.fromarray(image) |
|
image = ImageTk.PhotoImage(image) |
|
self.canvas.create_image(0, 0, anchor=tk.NW, image=image) |
|
self.canvas.image = image |
|
|
|
def classify_image(self): |
|
if self.image is not None: |
|
|
|
resized_image = cv2.resize(self.image, (224, 224)) |
|
resized_image = resized_image.astype('float32') / 255 |
|
resized_image = np.expand_dims(resized_image, axis=0) |
|
|
|
|
|
prediction = self.model.predict(resized_image) |
|
|
|
|
|
class_index = np.argmax(prediction) |
|
class_label = "Disorganized or Empty" if class_index == 1 else "Organized" |
|
|
|
|
|
if class_index == 1: |
|
|
|
image_with_box = cv2.rectangle(self.image, (0, 0), (self.image.shape[1], self.image.shape[0]), (255, 0, 0), 2) |
|
self.display_image(image_with_box) |
|
else: |
|
self.display_image(self.image) |
|
|
|
self.result_label.config(text=class_label) |
|
else: |
|
self.result_label.config(text="Please load an image first") |
|
|
|
def main(): |
|
root = tk.Tk() |
|
app = ShelfClassifierApp(root) |
|
root.mainloop() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|