orenk commited on
Commit
915e29f
·
1 Parent(s): 3a873bc

Upload ppo-LunarLander-v2

Browse files
LunarLander-v2-orenk.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e3c283c9d0097fb38c1321153979bfb489f99c22b77a397bee7212556aabf9f
3
+ size 146310
LunarLander-v2-orenk/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
LunarLander-v2-orenk/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8d5f500ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8d5f500d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8d5f500dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8d5f500e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8d5f500ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8d5f500f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8d5f504040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8d5f5040d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8d5f504160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8d5f5041f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8d5f504280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8d5f4ff420>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671702117675130865,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.015808000000000044,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4Lw48VWpbkCUhpRSlIwBbJRNJAGMAXSUR0ChDtmcOLBLdX2UKGgGaAloD0MIhzJUxdTkbUCUhpRSlGgVS8loFkdAoQ741P3ztnV9lChoBmgJaA9DCOli00ohRXBAlIaUUpRoFUvWaBZHQKEPEW1MM7V1fZQoaAZoCWgPQwicpWQ5SStzQJSGlFKUaBVL0GgWR0ChD5nbItDldX2UKGgGaAloD0MI+1qXGiEbc0CUhpRSlGgVS+9oFkdAoQ+lPBSDRXV9lChoBmgJaA9DCGsnSkIie2ZAlIaUUpRoFU3oA2gWR0ChEBXWe6I4dX2UKGgGaAloD0MIiiE5mbj0cECUhpRSlGgVS7xoFkdAoRAzye7L+3V9lChoBmgJaA9DCEoLl1VY829AlIaUUpRoFUvLaBZHQKEQvsSCe3B1fZQoaAZoCWgPQwiTpkHRvBhyQJSGlFKUaBVNIgFoFkdAoREAcYIjW3V9lChoBmgJaA9DCJLp0On5Y3JAlIaUUpRoFUvHaBZHQKERMWD6Fdt1fZQoaAZoCWgPQwiDUN7H0XVwQJSGlFKUaBVL02gWR0ChEV9tEXtTdX2UKGgGaAloD0MIMJ5BQz/9cECUhpRSlGgVTR8BaBZHQKERX5GBnSR1fZQoaAZoCWgPQwgvw3+6QSJxQJSGlFKUaBVLuWgWR0ChEXEdeY2LdX2UKGgGaAloD0MIQWZn0Xv9cECUhpRSlGgVS8NoFkdAoRGupXIU8HV9lChoBmgJaA9DCB13SgdrdHJAlIaUUpRoFU0GAWgWR0ChEhFGPPszdX2UKGgGaAloD0MIbJih8UQpc0CUhpRSlGgVS9poFkdAoRI4jrzGxXV9lChoBmgJaA9DCCqtvyVAxnFAlIaUUpRoFUvsaBZHQKETFYJVsDZ1fZQoaAZoCWgPQwj5LxAEyEJvQJSGlFKUaBVL2mgWR0ChE2pMQEpzdX2UKGgGaAloD0MIBOJ1/cLhcECUhpRSlGgVS/BoFkdAoROgJgLJCHV9lChoBmgJaA9DCGQjEK8rzXFAlIaUUpRoFU1GAWgWR0ChE8Hz6JqJdX2UKGgGaAloD0MIwHlx4quabkCUhpRSlGgVS9doFkdAoRQqlchTwXV9lChoBmgJaA9DCCCySBNvdHBAlIaUUpRoFUvIaBZHQKEUZO0svqV1fZQoaAZoCWgPQwg3iNaKtn9yQJSGlFKUaBVL5WgWR0ChFMhx5s0pdX2UKGgGaAloD0MIhc0AF+RZbUCUhpRSlGgVS9ZoFkdAoRTvOD8Lr3V9lChoBmgJaA9DCGuad5zi1nBAlIaUUpRoFUvzaBZHQKEVBeNT9891fZQoaAZoCWgPQwghW5aviw5yQJSGlFKUaBVNEAFoFkdAoRVHYYixFHV9lChoBmgJaA9DCLYPecuVa3BAlIaUUpRoFUvWaBZHQKEVWiQkond1fZQoaAZoCWgPQwg8oGzKFeRxQJSGlFKUaBVNNQFoFkdAoRVmaScLB3V9lChoBmgJaA9DCOLJbma0/XBAlIaUUpRoFUvSaBZHQKEVdAj6eoV1fZQoaAZoCWgPQwj5aHHGcDRwQJSGlFKUaBVLz2gWR0ChFjHrhR64dX2UKGgGaAloD0MI+GuyRn1xcECUhpRSlGgVS9doFkdAoRalRFZxJnV9lChoBmgJaA9DCPq5oSm7iWJAlIaUUpRoFU3oA2gWR0ChFxwnpjc3dX2UKGgGaAloD0MIuD8XDZlPcUCUhpRSlGgVS+BoFkdAoRcqzqrzXnV9lChoBmgJaA9DCIj3HFjOSnFAlIaUUpRoFUvCaBZHQKEXWgIQe3h1fZQoaAZoCWgPQwj3rGu0XGVwQJSGlFKUaBVL1GgWR0ChF2Ugr6LwdX2UKGgGaAloD0MIxOqPMIypcUCUhpRSlGgVTQABaBZHQKEXgfcvduZ1fZQoaAZoCWgPQwiCjevf9YhkQJSGlFKUaBVN6ANoFkdAoRerBMzuW3V9lChoBmgJaA9DCBoVONmGJnJAlIaUUpRoFUvfaBZHQKEYGrKeTV51fZQoaAZoCWgPQwimmIOg425xQJSGlFKUaBVLyWgWR0ChGDY6XBxhdX2UKGgGaAloD0MITZ6ymm4XcUCUhpRSlGgVS+ZoFkdAoRhECFK02XV9lChoBmgJaA9DCB+5Nek2+nBAlIaUUpRoFUvgaBZHQKEYcXLNfPZ1fZQoaAZoCWgPQwjOiqiJfpJyQJSGlFKUaBVL7GgWR0ChGIbWEsasdX2UKGgGaAloD0MI7//jhEm8ckCUhpRSlGgVS/RoFkdAoRjBwjt5U3V9lChoBmgJaA9DCPON6J41OHJAlIaUUpRoFU0jAWgWR0ChGM1AZ88cdX2UKGgGaAloD0MI8N5RYwIlcUCUhpRSlGgVTQMBaBZHQKEZl0Eovzx1fZQoaAZoCWgPQwhu/InKBphtQJSGlFKUaBVLymgWR0ChGag8KXv6dX2UKGgGaAloD0MIeouH9xxVckCUhpRSlGgVS8toFkdAoRnVwxWT5nV9lChoBmgJaA9DCPUOt0PDAG9AlIaUUpRoFUvXaBZHQKEaDO1OTJR1fZQoaAZoCWgPQwifBDbnYCduQJSGlFKUaBVL0mgWR0ChGhbXg9/0dX2UKGgGaAloD0MI/Bu0V5/gbkCUhpRSlGgVS/hoFkdAoRo6HXVbzXV9lChoBmgJaA9DCHicoiO5GW9AlIaUUpRoFUvXaBZHQKEaTP7el9B1fZQoaAZoCWgPQwiQEyaMZiVyQJSGlFKUaBVLzGgWR0ChGp2uoxYadX2UKGgGaAloD0MI4WBvYohEcECUhpRSlGgVS9toFkdAoRr3u1F6RnV9lChoBmgJaA9DCH1aRX9oVW9AlIaUUpRoFUvZaBZHQKEbPqLS/j91fZQoaAZoCWgPQwjC3O7lPuFxQJSGlFKUaBVLyWgWR0ChG0wZwXImdX2UKGgGaAloD0MIHXIz3MApcECUhpRSlGgVS8doFkdAoRtSntOVPnV9lChoBmgJaA9DCHC044ZfAnFAlIaUUpRoFUu2aBZHQKEca3IdU851fZQoaAZoCWgPQwjNrKWAtGtxQJSGlFKUaBVL6WgWR0ChHKTK1XvIdX2UKGgGaAloD0MIAmISLmSYcUCUhpRSlGgVS+poFkdAoRy6K508vHV9lChoBmgJaA9DCJ/Ik6Rr6nBAlIaUUpRoFUvAaBZHQKEc0Hnlnyx1fZQoaAZoCWgPQwgkRzoDox5xQJSGlFKUaBVL8GgWR0ChHTad1+y7dX2UKGgGaAloD0MIPzp15XNjckCUhpRSlGgVS/ZoFkdAoR19jEvTPXV9lChoBmgJaA9DCFjiAWVTvmZAlIaUUpRoFU3oA2gWR0ChHZnEETxodX2UKGgGaAloD0MIrHDLR5I6cUCUhpRSlGgVTSABaBZHQKEdqvboKUp1fZQoaAZoCWgPQwiuf9dnzrhtQJSGlFKUaBVLyWgWR0ChHbTvZyuIdX2UKGgGaAloD0MIIQTkS2hCc0CUhpRSlGgVS+1oFkdAoR3OHzpX63V9lChoBmgJaA9DCJ/Nqs9VwmxAlIaUUpRoFUviaBZHQKEeXwDNhVl1fZQoaAZoCWgPQwiqLXWQF2dxQJSGlFKUaBVL92gWR0ChHqLZrYXgdX2UKGgGaAloD0MIADj27DmucECUhpRSlGgVTQIBaBZHQKEevwm3OOd1fZQoaAZoCWgPQwjarPpc7S5xQJSGlFKUaBVL3GgWR0ChH60kfLcLdX2UKGgGaAloD0MIngjiPBy+bUCUhpRSlGgVS9JoFkdAoR+0yeqaPXV9lChoBmgJaA9DCOmcn+J4n3FAlIaUUpRoFUuzaBZHQKEf8oGY8dR1fZQoaAZoCWgPQwhRMjm1M6JtQJSGlFKUaBVLzWgWR0ChIAjgqEvkdX2UKGgGaAloD0MI5PkMqLcdckCUhpRSlGgVS8ZoFkdAoSB2jj7yhHV9lChoBmgJaA9DCNuHvOXq92xAlIaUUpRoFUvOaBZHQKEgeIWP91l1fZQoaAZoCWgPQwhoXDgQkuNuQJSGlFKUaBVNIAFoFkdAoSDD52yLRHV9lChoBmgJaA9DCHeHFANkPnBAlIaUUpRoFUvVaBZHQKEg0CnP3SN1fZQoaAZoCWgPQwjDLR9JSQVxQJSGlFKUaBVL4WgWR0ChINPB7/n4dX2UKGgGaAloD0MIesTouYWZb0CUhpRSlGgVS8toFkdAoSFN4u9OAXV9lChoBmgJaA9DCFUS2QfZkHFAlIaUUpRoFUvCaBZHQKEhiP7vXsh1fZQoaAZoCWgPQwhFgxQ8BRJyQJSGlFKUaBVLzmgWR0ChIZocJdB0dX2UKGgGaAloD0MI9rLttLUEcUCUhpRSlGgVS85oFkdAoSKestCiRHV9lChoBmgJaA9DCLdDw2LU7XFAlIaUUpRoFUvdaBZHQKEi33JPqLV1fZQoaAZoCWgPQwi8lLpkHApwQJSGlFKUaBVN9AFoFkdAoSOM9wFTvXV9lChoBmgJaA9DCNqPFJFh2W9AlIaUUpRoFUvyaBZHQKEjlCk43m51fZQoaAZoCWgPQwiV2LW93WBzQJSGlFKUaBVL1mgWR0ChI5i/O+qSdX2UKGgGaAloD0MIzXUaaSm+cUCUhpRSlGgVS/BoFkdAoSP9mSQo1HV9lChoBmgJaA9DCOutga3SE3FAlIaUUpRoFUvfaBZHQKEkG2ZRbbF1fZQoaAZoCWgPQwjVsN8T62xkQJSGlFKUaBVN6ANoFkdAoSRcy31BdHV9lChoBmgJaA9DCIrmASxyTm9AlIaUUpRoFUv3aBZHQKEkamIj4Yd1fZQoaAZoCWgPQwiXVkPiXjdxQJSGlFKUaBVL82gWR0ChJOMR6F/QdX2UKGgGaAloD0MI8s8M4sOhcUCUhpRSlGgVS+hoFkdAoSUK42CNCXV9lChoBmgJaA9DCEFn0qZqx2JAlIaUUpRoFU3oA2gWR0ChJh0CJXQudX2UKGgGaAloD0MIC0EOSpgFZUCUhpRSlGgVTegDaBZHQKEmdV5KODJ1fZQoaAZoCWgPQwibqRCPxIVvQJSGlFKUaBVL9WgWR0ChJnQPy08edX2UKGgGaAloD0MI06HT8256cUCUhpRSlGgVS+xoFkdAoSaUFt8/lnV9lChoBmgJaA9DCOCBAYQP93FAlIaUUpRoFUvTaBZHQKEm45d4Vyp1fZQoaAZoCWgPQwhlxXB1APZwQJSGlFKUaBVL5mgWR0ChJyG1x82KdX2UKGgGaAloD0MIjgWFQdk6c0CUhpRSlGgVS9RoFkdAoSdNKdxyXHV9lChoBmgJaA9DCOrNqPmqy3BAlIaUUpRoFUvQaBZHQKEnWQpWmxd1ZS4="
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 380,
76
+ "n_steps": 2048,
77
+ "gamma": 0.99,
78
+ "gae_lambda": 0.95,
79
+ "ent_coef": 0.0,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 10,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
LunarLander-v2-orenk/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0aff7c010fa17b36436c4e9af677a14ea082ad9d9532892adfe2548671e64bc9
3
+ size 88057
LunarLander-v2-orenk/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9eb34faf71e80ae793a0dcde6c1eab0892779c644ccc55e2d972db9d9666514e
3
+ size 43201
LunarLander-v2-orenk/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander-v2-orenk/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 258.96 +/- 37.26
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8d5f500ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8d5f500d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8d5f500dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8d5f500e50>", "_build": "<function ActorCriticPolicy._build at 0x7f8d5f500ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8d5f500f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8d5f504040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8d5f5040d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8d5f504160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8d5f5041f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8d5f504280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8d5f4ff420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671702117675130865, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4Lw48VWpbkCUhpRSlIwBbJRNJAGMAXSUR0ChDtmcOLBLdX2UKGgGaAloD0MIhzJUxdTkbUCUhpRSlGgVS8loFkdAoQ741P3ztnV9lChoBmgJaA9DCOli00ohRXBAlIaUUpRoFUvWaBZHQKEPEW1MM7V1fZQoaAZoCWgPQwicpWQ5SStzQJSGlFKUaBVL0GgWR0ChD5nbItDldX2UKGgGaAloD0MI+1qXGiEbc0CUhpRSlGgVS+9oFkdAoQ+lPBSDRXV9lChoBmgJaA9DCGsnSkIie2ZAlIaUUpRoFU3oA2gWR0ChEBXWe6I4dX2UKGgGaAloD0MIiiE5mbj0cECUhpRSlGgVS7xoFkdAoRAzye7L+3V9lChoBmgJaA9DCEoLl1VY829AlIaUUpRoFUvLaBZHQKEQvsSCe3B1fZQoaAZoCWgPQwiTpkHRvBhyQJSGlFKUaBVNIgFoFkdAoREAcYIjW3V9lChoBmgJaA9DCJLp0On5Y3JAlIaUUpRoFUvHaBZHQKERMWD6Fdt1fZQoaAZoCWgPQwiDUN7H0XVwQJSGlFKUaBVL02gWR0ChEV9tEXtTdX2UKGgGaAloD0MIMJ5BQz/9cECUhpRSlGgVTR8BaBZHQKERX5GBnSR1fZQoaAZoCWgPQwgvw3+6QSJxQJSGlFKUaBVLuWgWR0ChEXEdeY2LdX2UKGgGaAloD0MIQWZn0Xv9cECUhpRSlGgVS8NoFkdAoRGupXIU8HV9lChoBmgJaA9DCB13SgdrdHJAlIaUUpRoFU0GAWgWR0ChEhFGPPszdX2UKGgGaAloD0MIbJih8UQpc0CUhpRSlGgVS9poFkdAoRI4jrzGxXV9lChoBmgJaA9DCCqtvyVAxnFAlIaUUpRoFUvsaBZHQKETFYJVsDZ1fZQoaAZoCWgPQwj5LxAEyEJvQJSGlFKUaBVL2mgWR0ChE2pMQEpzdX2UKGgGaAloD0MIBOJ1/cLhcECUhpRSlGgVS/BoFkdAoROgJgLJCHV9lChoBmgJaA9DCGQjEK8rzXFAlIaUUpRoFU1GAWgWR0ChE8Hz6JqJdX2UKGgGaAloD0MIwHlx4quabkCUhpRSlGgVS9doFkdAoRQqlchTwXV9lChoBmgJaA9DCCCySBNvdHBAlIaUUpRoFUvIaBZHQKEUZO0svqV1fZQoaAZoCWgPQwg3iNaKtn9yQJSGlFKUaBVL5WgWR0ChFMhx5s0pdX2UKGgGaAloD0MIhc0AF+RZbUCUhpRSlGgVS9ZoFkdAoRTvOD8Lr3V9lChoBmgJaA9DCGuad5zi1nBAlIaUUpRoFUvzaBZHQKEVBeNT9891fZQoaAZoCWgPQwghW5aviw5yQJSGlFKUaBVNEAFoFkdAoRVHYYixFHV9lChoBmgJaA9DCLYPecuVa3BAlIaUUpRoFUvWaBZHQKEVWiQkond1fZQoaAZoCWgPQwg8oGzKFeRxQJSGlFKUaBVNNQFoFkdAoRVmaScLB3V9lChoBmgJaA9DCOLJbma0/XBAlIaUUpRoFUvSaBZHQKEVdAj6eoV1fZQoaAZoCWgPQwj5aHHGcDRwQJSGlFKUaBVLz2gWR0ChFjHrhR64dX2UKGgGaAloD0MI+GuyRn1xcECUhpRSlGgVS9doFkdAoRalRFZxJnV9lChoBmgJaA9DCPq5oSm7iWJAlIaUUpRoFU3oA2gWR0ChFxwnpjc3dX2UKGgGaAloD0MIuD8XDZlPcUCUhpRSlGgVS+BoFkdAoRcqzqrzXnV9lChoBmgJaA9DCIj3HFjOSnFAlIaUUpRoFUvCaBZHQKEXWgIQe3h1fZQoaAZoCWgPQwj3rGu0XGVwQJSGlFKUaBVL1GgWR0ChF2Ugr6LwdX2UKGgGaAloD0MIxOqPMIypcUCUhpRSlGgVTQABaBZHQKEXgfcvduZ1fZQoaAZoCWgPQwiCjevf9YhkQJSGlFKUaBVN6ANoFkdAoRerBMzuW3V9lChoBmgJaA9DCBoVONmGJnJAlIaUUpRoFUvfaBZHQKEYGrKeTV51fZQoaAZoCWgPQwimmIOg425xQJSGlFKUaBVLyWgWR0ChGDY6XBxhdX2UKGgGaAloD0MITZ6ymm4XcUCUhpRSlGgVS+ZoFkdAoRhECFK02XV9lChoBmgJaA9DCB+5Nek2+nBAlIaUUpRoFUvgaBZHQKEYcXLNfPZ1fZQoaAZoCWgPQwjOiqiJfpJyQJSGlFKUaBVL7GgWR0ChGIbWEsasdX2UKGgGaAloD0MI7//jhEm8ckCUhpRSlGgVS/RoFkdAoRjBwjt5U3V9lChoBmgJaA9DCPON6J41OHJAlIaUUpRoFU0jAWgWR0ChGM1AZ88cdX2UKGgGaAloD0MI8N5RYwIlcUCUhpRSlGgVTQMBaBZHQKEZl0Eovzx1fZQoaAZoCWgPQwhu/InKBphtQJSGlFKUaBVLymgWR0ChGag8KXv6dX2UKGgGaAloD0MIeouH9xxVckCUhpRSlGgVS8toFkdAoRnVwxWT5nV9lChoBmgJaA9DCPUOt0PDAG9AlIaUUpRoFUvXaBZHQKEaDO1OTJR1fZQoaAZoCWgPQwifBDbnYCduQJSGlFKUaBVL0mgWR0ChGhbXg9/0dX2UKGgGaAloD0MI/Bu0V5/gbkCUhpRSlGgVS/hoFkdAoRo6HXVbzXV9lChoBmgJaA9DCHicoiO5GW9AlIaUUpRoFUvXaBZHQKEaTP7el9B1fZQoaAZoCWgPQwiQEyaMZiVyQJSGlFKUaBVLzGgWR0ChGp2uoxYadX2UKGgGaAloD0MI4WBvYohEcECUhpRSlGgVS9toFkdAoRr3u1F6RnV9lChoBmgJaA9DCH1aRX9oVW9AlIaUUpRoFUvZaBZHQKEbPqLS/j91fZQoaAZoCWgPQwjC3O7lPuFxQJSGlFKUaBVLyWgWR0ChG0wZwXImdX2UKGgGaAloD0MIHXIz3MApcECUhpRSlGgVS8doFkdAoRtSntOVPnV9lChoBmgJaA9DCHC044ZfAnFAlIaUUpRoFUu2aBZHQKEca3IdU851fZQoaAZoCWgPQwjNrKWAtGtxQJSGlFKUaBVL6WgWR0ChHKTK1XvIdX2UKGgGaAloD0MIAmISLmSYcUCUhpRSlGgVS+poFkdAoRy6K508vHV9lChoBmgJaA9DCJ/Ik6Rr6nBAlIaUUpRoFUvAaBZHQKEc0Hnlnyx1fZQoaAZoCWgPQwgkRzoDox5xQJSGlFKUaBVL8GgWR0ChHTad1+y7dX2UKGgGaAloD0MIPzp15XNjckCUhpRSlGgVS/ZoFkdAoR19jEvTPXV9lChoBmgJaA9DCFjiAWVTvmZAlIaUUpRoFU3oA2gWR0ChHZnEETxodX2UKGgGaAloD0MIrHDLR5I6cUCUhpRSlGgVTSABaBZHQKEdqvboKUp1fZQoaAZoCWgPQwiuf9dnzrhtQJSGlFKUaBVLyWgWR0ChHbTvZyuIdX2UKGgGaAloD0MIIQTkS2hCc0CUhpRSlGgVS+1oFkdAoR3OHzpX63V9lChoBmgJaA9DCJ/Nqs9VwmxAlIaUUpRoFUviaBZHQKEeXwDNhVl1fZQoaAZoCWgPQwiqLXWQF2dxQJSGlFKUaBVL92gWR0ChHqLZrYXgdX2UKGgGaAloD0MIADj27DmucECUhpRSlGgVTQIBaBZHQKEevwm3OOd1fZQoaAZoCWgPQwjarPpc7S5xQJSGlFKUaBVL3GgWR0ChH60kfLcLdX2UKGgGaAloD0MIngjiPBy+bUCUhpRSlGgVS9JoFkdAoR+0yeqaPXV9lChoBmgJaA9DCOmcn+J4n3FAlIaUUpRoFUuzaBZHQKEf8oGY8dR1fZQoaAZoCWgPQwhRMjm1M6JtQJSGlFKUaBVLzWgWR0ChIAjgqEvkdX2UKGgGaAloD0MI5PkMqLcdckCUhpRSlGgVS8ZoFkdAoSB2jj7yhHV9lChoBmgJaA9DCNuHvOXq92xAlIaUUpRoFUvOaBZHQKEgeIWP91l1fZQoaAZoCWgPQwhoXDgQkuNuQJSGlFKUaBVNIAFoFkdAoSDD52yLRHV9lChoBmgJaA9DCHeHFANkPnBAlIaUUpRoFUvVaBZHQKEg0CnP3SN1fZQoaAZoCWgPQwjDLR9JSQVxQJSGlFKUaBVL4WgWR0ChINPB7/n4dX2UKGgGaAloD0MIesTouYWZb0CUhpRSlGgVS8toFkdAoSFN4u9OAXV9lChoBmgJaA9DCFUS2QfZkHFAlIaUUpRoFUvCaBZHQKEhiP7vXsh1fZQoaAZoCWgPQwhFgxQ8BRJyQJSGlFKUaBVLzmgWR0ChIZocJdB0dX2UKGgGaAloD0MI9rLttLUEcUCUhpRSlGgVS85oFkdAoSKestCiRHV9lChoBmgJaA9DCLdDw2LU7XFAlIaUUpRoFUvdaBZHQKEi33JPqLV1fZQoaAZoCWgPQwi8lLpkHApwQJSGlFKUaBVN9AFoFkdAoSOM9wFTvXV9lChoBmgJaA9DCNqPFJFh2W9AlIaUUpRoFUvyaBZHQKEjlCk43m51fZQoaAZoCWgPQwiV2LW93WBzQJSGlFKUaBVL1mgWR0ChI5i/O+qSdX2UKGgGaAloD0MIzXUaaSm+cUCUhpRSlGgVS/BoFkdAoSP9mSQo1HV9lChoBmgJaA9DCOutga3SE3FAlIaUUpRoFUvfaBZHQKEkG2ZRbbF1fZQoaAZoCWgPQwjVsN8T62xkQJSGlFKUaBVN6ANoFkdAoSRcy31BdHV9lChoBmgJaA9DCIrmASxyTm9AlIaUUpRoFUv3aBZHQKEkamIj4Yd1fZQoaAZoCWgPQwiXVkPiXjdxQJSGlFKUaBVL82gWR0ChJOMR6F/QdX2UKGgGaAloD0MI8s8M4sOhcUCUhpRSlGgVS+hoFkdAoSUK42CNCXV9lChoBmgJaA9DCEFn0qZqx2JAlIaUUpRoFU3oA2gWR0ChJh0CJXQudX2UKGgGaAloD0MIC0EOSpgFZUCUhpRSlGgVTegDaBZHQKEmdV5KODJ1fZQoaAZoCWgPQwibqRCPxIVvQJSGlFKUaBVL9WgWR0ChJnQPy08edX2UKGgGaAloD0MI06HT8256cUCUhpRSlGgVS+xoFkdAoSaUFt8/lnV9lChoBmgJaA9DCOCBAYQP93FAlIaUUpRoFUvTaBZHQKEm45d4Vyp1fZQoaAZoCWgPQwhlxXB1APZwQJSGlFKUaBVL5mgWR0ChJyG1x82KdX2UKGgGaAloD0MIjgWFQdk6c0CUhpRSlGgVS9RoFkdAoSdNKdxyXHV9lChoBmgJaA9DCOrNqPmqy3BAlIaUUpRoFUvQaBZHQKEnWQpWmxd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (166 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 258.96352619328417, "std_reward": 37.264898157035844, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-22T10:17:56.683628"}