Jingya HF staff commited on
Commit
68c50b1
1 Parent(s): 31e6a64

Update README with custom snippet

Browse files
Files changed (1) hide show
  1. README.md +15 -39
README.md CHANGED
@@ -9,53 +9,29 @@ license: apache-2.0
9
  ---
10
  # ONNX convert all-MiniLM-L6-v2
11
  ## Conversion of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
- ## Usage (Sentence-Transformers)
14
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
 
15
  ```
16
- pip install -U sentence-transformers
17
  ```
18
  Then you can use the model like this:
19
  ```python
20
- from sentence_transformers import SentenceTransformer
21
- sentences = ["This is an example sentence", "Each sentence is converted"]
22
 
23
- model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
24
- embeddings = model.encode(sentences)
25
- print(embeddings)
 
26
  ```
27
- ## Usage (HuggingFace Transformers)
28
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
29
  ```python
30
- from transformers import AutoTokenizer, AutoModel
31
- import torch
32
- import torch.nn.functional as F
33
-
34
- #Mean Pooling - Take attention mask into account for correct averaging
35
- def mean_pooling(model_output, attention_mask):
36
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
37
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
38
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
39
-
40
- # Sentences we want sentence embeddings for
41
- sentences = ['This is an example sentence', 'Each sentence is converted']
42
-
43
- # Load model from HuggingFace Hub
44
- tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
45
- model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
46
-
47
- # Tokenize sentences
48
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
49
 
50
- # Compute token embeddings
51
- with torch.no_grad():
52
- model_output = model(**encoded_input)
53
- # Perform pooling
54
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
55
- # Normalize embeddings
56
- sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
57
- print("Sentence embeddings:")
58
- print(sentence_embeddings)
59
  ```
60
  ## Evaluation Results
61
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2)
 
9
  ---
10
  # ONNX convert all-MiniLM-L6-v2
11
  ## Conversion of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
12
+ This is a [sentence-transformers](https://www.SBERT.net) ONNX model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. This custom model takes `last_hidden_state` and `pooler_output` whereas the sentence-transformers exported with default ONNX config only contains `last_hidden_state` as output.
13
+
14
+ ## Usage (HuggingFace Optimum)
15
+ Using this model becomes easy when you have [optimum](https://github.com/huggingface/optimum) installed:
16
  ```
17
+ python -m pip install optimum
18
  ```
19
  Then you can use the model like this:
20
  ```python
21
+ from optimum.onnxruntime.modeling_ort import ORTModelForCustomTasks
 
22
 
23
+ model = ORTModelForCustomTasks.from_pretrained("optimum/sbert-all-MiniLM-L6-with-pooler")
24
+ tokenizer = AutoTokenizer.from_pretrained("optimum/sbert-all-MiniLM-L6-with-pooler")
25
+ inputs = tokenizer("I love burritos!", return_tensors="pt")
26
+ pred = model(**inputs)
27
  ```
28
+ You will also be able to leverage the pipeline API in transformers:
 
29
  ```python
30
+ from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ onnx_extractor = pipeline("feature-extraction", model=model, tokenizer=tokenizer)
33
+ text = "I love burritos!"
34
+ pred = onnx_extractor(text)
 
 
 
 
 
 
35
  ```
36
  ## Evaluation Results
37
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2)