TenzinGayche
commited on
Commit
·
75700af
1
Parent(s):
19ca4e3
Update handler.py
Browse files- handler.py +10 -4
handler.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from typing import Dict, Any,Union
|
2 |
import librosa
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import pyewts
|
@@ -10,6 +11,7 @@ from num2tib.core import convert2text
|
|
10 |
import base64
|
11 |
import re
|
12 |
import requests
|
|
|
13 |
converter = pyewts.pyewts()
|
14 |
def download_file(url, destination):
|
15 |
response = requests.get(url)
|
@@ -80,15 +82,19 @@ class EndpointHandler():
|
|
80 |
text=cleanup_text(text)
|
81 |
text=replace_numbers_with_convert(text)
|
82 |
inputs = self.processor(text=text, return_tensors="pt")
|
83 |
-
# limit input length
|
84 |
input_ids = inputs["input_ids"]
|
85 |
input_ids = input_ids[..., :self.model.config.max_text_positions]
|
86 |
speaker_embedding = np.load(speaker_embeddings['Lhasa(female)'])
|
87 |
speaker_embedding = torch.tensor(speaker_embedding)
|
88 |
speech = self.model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=self.vocoder.to('cuda'))
|
89 |
speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000)
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
return {
|
91 |
"sample_rate": 16000,
|
92 |
-
"
|
93 |
-
|
94 |
-
}
|
|
|
1 |
from typing import Dict, Any,Union
|
2 |
import librosa
|
3 |
+
import tempfile
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
import pyewts
|
|
|
11 |
import base64
|
12 |
import re
|
13 |
import requests
|
14 |
+
import os
|
15 |
converter = pyewts.pyewts()
|
16 |
def download_file(url, destination):
|
17 |
response = requests.get(url)
|
|
|
82 |
text=cleanup_text(text)
|
83 |
text=replace_numbers_with_convert(text)
|
84 |
inputs = self.processor(text=text, return_tensors="pt")
|
|
|
85 |
input_ids = inputs["input_ids"]
|
86 |
input_ids = input_ids[..., :self.model.config.max_text_positions]
|
87 |
speaker_embedding = np.load(speaker_embeddings['Lhasa(female)'])
|
88 |
speaker_embedding = torch.tensor(speaker_embedding)
|
89 |
speech = self.model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=self.vocoder.to('cuda'))
|
90 |
speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000)
|
91 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
|
92 |
+
temp_wav_path = temp_wav_file.name
|
93 |
+
librosa.output.write_wav(temp_wav_path, speech.numpy(), sr=16000)
|
94 |
+
with open(temp_wav_path, "rb") as wav_file:
|
95 |
+
audio_base64 = base64.b64encode(wav_file.read()).decode("utf-8")
|
96 |
+
os.remove(temp_wav_path)
|
97 |
return {
|
98 |
"sample_rate": 16000,
|
99 |
+
"audio_base64": audio_base64,
|
100 |
+
}
|
|