File size: 6,194 Bytes
e0456e9
a5833d2
e0456e9
 
 
496723f
8f43d34
 
496723f
 
ad5013b
e0456e9
5c266fb
e0456e9
5c266fb
e0456e9
 
 
 
 
 
 
5c266fb
e0456e9
968d461
 
e0456e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bec7d1c
e0456e9
 
 
 
 
 
 
bec7d1c
 
 
 
 
 
 
 
 
e0456e9
 
 
 
bec7d1c
 
 
e0456e9
 
 
 
 
 
 
968d461
 
 
e0456e9
 
 
 
968d461
e0456e9
 
 
 
968d461
e0456e9
 
 
 
968d461
 
e0456e9
 
 
688f720
5c266fb
 
 
688f720
 
cecfa59
b02ef23
 
 
cecfa59
 
b02ef23
 
 
688f720
 
cecfa59
688f720
 
 
 
cecfa59
 
 
 
 
 
 
 
 
688f720
3274a35
688f720
 
76e3155
 
688f720
 
 
76e3155
688f720
 
 
 
 
 
 
532296c
ad5013b
532296c
 
5c266fb
532296c
68245e4
 
 
 
532296c
 
cecfa59
dc60691
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
pipeline_tag: visual-question-answering
---

## MiniCPM-V
### News
-  [5/20]🔥 GPT-4V level multimodal model [**MiniCPM-Llama3-V 2.5**](https://huggingface.co./openbmb/MiniCPM-Llama3-V-2_5) is out.
-  [4/11]🔥 [**MiniCPM-V 2.0**](https://huggingface.co./openbmb/MiniCPM-V-2) is out.
  

**MiniCPM-V** (i.e., OmniLMM-3B) is an efficient version with promising performance for deployment. The model is built based on SigLip-400M and [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/), connected by a perceiver resampler. Notable features of OmniLMM-3B include:

- ⚡️ **High Efficiency.** 

  MiniCPM-V can be **efficiently deployed on most GPU cards and personal computers**, and **even on end devices such as mobile phones**. In terms of visual encoding, we compress the image representations into 64 tokens via a perceiver resampler, which is significantly fewer than other LMMs based on MLP architecture (typically > 512 tokens). This allows OmniLMM-3B to operate with **much less memory cost and higher speed during inference**.

- 🔥 **Promising Performance.** 

  MiniCPM-V achieves **state-of-the-art performance** on multiple benchmarks (including MMMU, MME, and MMbech, etc) among models with comparable sizes, surpassing existing LMMs built on Phi-2. It even **achieves comparable or better performance than the 9.6B Qwen-VL-Chat**.

- 🙌 **Bilingual Support.** 

  MiniCPM-V is **the first end-deployable LMM supporting bilingual multimodal interaction in English and Chinese**. This is achieved by generalizing multimodal capabilities across languages, a technique from the ICLR 2024 spotlight [paper](https://arxiv.org/abs/2308.12038).

### Evaluation

<div align="center">

<table style="margin: 0px auto;">
<thead>
  <tr>
    <th align="left">Model</th>
    <th>Size</th>
    <th>MME</th>
    <th nowrap="nowrap" >MMB dev (en)</th>
    <th nowrap="nowrap" >MMB dev (zh)</th>
    <th nowrap="nowrap" >MMMU val</th>
    <th nowrap="nowrap" >CMMMU val</th>
  </tr>
</thead>
<tbody align="center">
  <tr>
    <td align="left">LLaVA-Phi</td>
    <td align="right">3.0B</td>
    <td>1335</td>
    <td>59.8</td>
    <td>- </td>
    <td>- </td>
    <td>- </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left">MobileVLM</td>
    <td align="right">3.0B</td>
    <td>1289</td>
    <td>59.6</td>
    <td>- </td>
    <td>- </td>
    <td>- </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left" >Imp-v1</td>
    <td align="right">3B</td>
    <td>1434</td>
    <td>66.5</td>
    <td>- </td>
    <td>- </td>
    <td>- </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left" >Qwen-VL-Chat</td>
    <td align="right" >9.6B</td>
    <td>1487</td>
    <td>60.6 </td>
    <td>56.7 </td>
    <td>35.9 </td>
    <td>30.7 </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left" >CogVLM</td>
    <td align="right">17.4B </td>
    <td>1438 </td>
    <td>63.7 </td>
    <td>53.8 </td>
    <td>32.1 </td>
    <td>- </td>
  </tr>
  <tr>
    <td nowrap="nowrap" align="left" ><b>MiniCPM-V</b></td>
    <td align="right">3B </td>
    <td>1452 </td>
    <td>67.9 </td>
    <td>65.3 </td>
    <td>37.2 </td>
    <td>32.1 </td>
  </tr>
</tbody>
</table>

</div>


### Examples
<div align="center">
<table>
  <tr>
    <td>
      <p> 
        <img src="assets/Mushroom_en.gif" width="400"/>
      </p>
    </td>
    <td>
      <p> 
        <img src="assets/Snake_en.gif" width="400"/>
      </p>
    </td>
  </tr>
</table>
</div>


## Demo
Click here to try out the Demo of [MiniCPM-V](http://120.92.209.146:80).

## Deployment on Mobile Phone
Currently MiniCPM-V (i.e., OmniLMM-3B) can be deployed on mobile phones with Android and Harmony operating systems. 🚀 Try it out [here](https://github.com/OpenBMB/mlc-MiniCPM).


## Usage
Inference using Huggingface transformers on Nivdia GPUs or Mac with MPS (Apple silicon or AMD GPUs). Requirements tested on python 3.10:
```
Pillow==10.1.0
timm==0.9.10
torch==2.1.2
torchvision==0.16.2
transformers==4.36.0
sentencepiece==0.1.99
```

```python
# test.py
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained('openbmb/MiniCPM-V', trust_remote_code=True, torch_dtype=torch.bfloat16)
# For Nvidia GPUs support BF16 (like A100, H100, RTX3090)
model = model.to(device='cuda', dtype=torch.bfloat16)
# For Nvidia GPUs do NOT support BF16 (like V100, T4, RTX2080)
#model = model.to(device='cuda', dtype=torch.float16)
# For Mac with MPS (Apple silicon or AMD GPUs).
# Run with `PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py`
#model = model.to(device='mps', dtype=torch.float16)

tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V', trust_remote_code=True)
model.eval()

image = Image.open('xx.jpg').convert('RGB')
question = 'What is in the image?'
msgs = [{'role': 'user', 'content': question}]

res, context, _ = model.chat(
    image=image,
    msgs=msgs,
    context=None,
    tokenizer=tokenizer,
    sampling=True,
    temperature=0.7
)
print(res)
```

Please look at [GitHub](https://github.com/OpenBMB/OmniLMM) for more detail about usage.

## License

#### Model License
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License. 
* The usage of MiniCPM-V series model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
* The models and weights of MiniCPM are completely free for academic research. after filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.


#### Statement
* As a LLM, MiniCPM-V generates contents by learning a large mount of texts, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-V does not represent the views and positions of the model developers
* We will not be liable for any problems arising from the use of the MinCPM-V open Source model, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.